
A First Course in Linear Algebra

by David Easdown

Hints and Short Solutions to Selected Exercises

Chapter 0 Introduction

0.1. Observe that
1

2
(2x + 4) − x = x + 2 − x = 2 .

0.2. The y-intercept is 2 and the x-intercept is 3. The slope of the line regarding the x-axis
as horizontal is −2/3. Regarding the y-axis as horizontal the slope is −3/2.

0.3. The equation of the reflected line is 3x+2y = 6, with slope −3/2, which is the reciprocal
of the slope of the original line.

0.4. The equation of the rotated line is −3x+2y = 6, with slope 3/2, which is the negative
reciprocal of the slope of the original line.

0.5. The point of intersection is (6/5, 6/5).

0.6.∗ The equation of the reflected line is bx + ay = c + k(a − b) .

0.7.∗ The equation of the rotated line is −bx + ay = c + a(x0 − y0) + b(x0 + y0) .

0.10.∗∗ Verify first that 1 + 2 + · · ·+ n =
n(n + 1)

2
, and then play with inequalities.

Chapter 1 Geometric Vectors

1.1. (i) v + u (ii) u − v (iii) u − v (iv) u + v −w (v) u − v − w

1.2. (i) x = a − b (ii) x = c − 12

7
b

1.4.
(−→
PQ +

−→
QR

)

+
−→
RS =

−→
PR +

−→
RS =

−→
PS =

−→
PQ +

−→
QS =

−→
PQ +

(−→
QR +

−→
RS

)

1.5. The rule works because ratios of corresponding sides of similar triangles are equal, and
triangles which have been rotated 180◦ are congruent.

1.6.
−→
OR =

−→
OP +

−→
PR =

−→
OP +

1

2

(−→
PO +

−→
OQ

)

=
−→
OP − 1

2

−→
OP +

1

2

−→
OQ =

1

2

(−→
OP +

−→
OQ

)

1.7.∗ Use the previous exercise. Check that the sum of vectors representing the medians,
emanating from the vertices and pointing in the direction of midpoints of opposite
sides, is the zero vector.

1.9.∗ Let PQRS be a parallelogram and suppose T is the midpoint of the diagonal PR.

Verify that
−→
QT =

1

2

−→
QS. First steps: expand

−→
QT =

−→
QP +

−→
PT =

−→
QP +

1

2

−→
PR.

1.10.∗∗ Suppose that
−→
PU = α

−→
PR and

−→
QU = β

−→
QT . Use the fact that

−→
PS and

−→
PQ are not

parallel to deduce that α = β =
r + s

r + 2s
.



Chapter 2 Position Vectors and Components

2.1. (i) 5i+ 9j+4k (ii) 3j− 4k (iii) 5i+ 15j− 4k (iv) 3i+ 6j− 6k (v)
i

2
− 3j

2
− 4k

(vi) 13 (vii) 5 (viii) 3 (ix) 9 (x) 21 (xi)
5i

13
− 12j

13
(xii) −3j

5
+

4k

5

(xiii)
i

3
+

2j

3
− 2k

3
(xiv)

√
6 (xv)

√
62

2.2. (i)
−→
OP = i + j + k ,

−→
OQ = −i − j ,

−→
OR = j + 2k ,

−→
OS = 2i + 3j + 3k ,−→

PQ = −2i − 2j− k ,
−→
QP = 2i + 2j + k ,

−→
QR = i + 2j + 2k ,

−→
RS = 2i + 2j + k ,−→

SP = −i − 2j− 2k

(ii) Observe that
−→
PQ =

−→
SR so PQRS is a parallelogram. Further

∣

∣

−→
PQ

∣

∣ =
∣

∣

−→
QR

∣

∣ =
3 , so PQRS is a rhombus. But the diagonals may be represented by the vectors−→
PR = −i + k of length

√
2 and

−→
QS = 3i + 4j + 3k of length

√
34 6=

√
2 , so the

rhombus cannot be a square.

2.4. (i) −2 , 6 (ii) 4/3

2.6.∗
−→
OR =

−→
OP +

−→
PR =

−→
OP +

λ

λ + µ

(−→
PO +

−→
OQ

)

=
µ
−→
OP + λ

−→
OQ

λ + µ

2.7.∗
−→
QT =

1

3
(v − 2u) ,

−−→
QB =

1

2
(v − 2u) ,

2.8.∗ If λ1v1 + · · ·+ λnvn = 0 where some λi 6= 0 then

vi =

(−λ1

λi

)

v1 + · · · +
(−λi−1

λi

)

vi−1 +

(−λi+1

λi

)

vi+1 + · · ·+
(−λn

λi

)

vn .

Conversely, if some vi is a linear combination of the other vectors, say

vi = a1v1 + · · · + ai−1vi−1 + ai+1vi+1 + · · ·+ anvn ,

then
a1v1 + · · · + ai−1vi−1 + (−1)vi + ai+1vi+1 + · · ·+ anvn = 0 ,

so that the implication in the definition of linear independence fails.

2.10.∗∗ Suppose that
λ0f0 + · · · + λnfn = 0 ,

where λ0, . . . , λn are real numbers and 0 denotes the zero function. Interpret this as
a polynomial equation. Prove that a nonzero polynomial of degree n has at most
n roots. Use the fact that there are infinitely many real numbers to deduce that
λ0 = . . . = λn = 0 .



Chapter 3 Dot Products and Projections

3.1. (i) −36 , 29 , −14 , 15 , 100 (ii) obtuse, obtuse, acute

(iii) − 36

5
,

36

25

(

3j− 4k
)

, 5i +
192

25
j +

144

25
k

(iv)
5

3

(

i+2j−2k
)

,
1

3

(

10i+17j+22k
)

,
15

122

(

5i+9j+4k
)

,
1

122

(

47i+109j−304k
)

3.2. (i) acute, obtuse (ii) both equal to
(

1
2
, 1, 3

2

)

(iii)
−→
PR · −→QS = 0

3.3. (i) v · (ax + by) = a(v · x) + b(v · y) = a(0) + b(0) = 0

(ii) v ·y = v ·
(

1

b
(ax+by−ax)

)

=
1

b

(

v ·(ax+by)−a(v ·x)

)

=
1

b
(0−a(0)) = 0

3.4. Expand brackets, bring scalars to the front, and evaluate.

3.5. Drop a perpendicular to create a right angled triangle.

3.6.∗ Given v = ai + bj + ck and w = di + ej + fk and the geometric definition, we have,
applying the Cosine Rule at the second step, and the length formula at the third step,

v · w = |v||w| cos θ =
1

2

(

|v|2 + |w|2 − |v − w|2
)

=
1

2

(

a2 + b2 + c2 + d2 + e2 + f 2 −
(

(a − d)2 + (b − d)2 + (c − f)2
)

)

=
1

2

(

2ad + 2bd + 2ef
)

= ad + bd + ef .

3.7.∗ Let PQRS be a rhombus, so
∣

∣

−→
PQ

∣

∣ =
∣

∣

−→
QR

∣

∣ . Observe that

−→
PR · −→QS =

(−→
PQ +

−→
QR

)

·
(−→
QR +

−→
RS

)

,

expand brackets, and evaluate to 0.

3.8.∗ Let PQR be a triangle, C the midpoint of PQ and D the intersection of the perpen-
dicular bisectors of PR and QR. Observe that

−−→
DC · −→PQ =

(−−→
DB +

−−→
BC

)

·
(−→
PR +

−→
RQ

)

,

expand brackets, and evaluate to 0.

3.9.∗ With the notation of the previous exercise, use Pythagoras to show that
∣

∣PD
∣

∣ =
∣

∣RD
∣

∣ .

3.10.∗∗ Proving that the geometric dot product distributes over vector addition is the difficult
part. Draw a good diagram and carefully label angles. Apply the Sine Rule for triangles
and manipulate expressions using trigonometric formulae.



Chapter 4 Cross Products

4.1. (i) 48i − 20j− 15k (ii) −24i + 10j− 2k (iii) −2i + 4j + 3k

(iv) −26i + 14j + k (v) 70i + 81j + 116k (vi) 38 (vii) 38 (viii) 38v

4.2. (i)
1√
2

(

i + k
)

(ii) − 1√
2

(

i + k
)

4.3. (i) Both areas are

√
17

2
, and there is no surprise since PQRS is a rhombus.

(ii) d1 =
√

2 , d2 =
√

34 ,
d1d2

4
=

√
17

2
, which coincides with the areas of the

triangles in the first part, which is no surprise since the diagonals of a rhombus
are mutually perpendicular.

4.5. (i) (c) (ii) (d) (iii) (e) (iv) (b) (v) (a)

4.9.∗ Having verified the first two equations, then (u× v)×w = u× (v×w) if and only
if (v · w)u = (u · v)w which occurs if and only if u and w are parallel, or v is
perpendicular to both u and w .

4.10.∗∗ In proving distributivity, project the vector u + v into the plane perpendicular to w,
and then rotate the projected image in this plane until it is perpendicular to u + v.
Compare with rotated projections of u and v.

Chapter 5 Lines in Space

5.1. (i) r = 3i + 2j + k + t(i + 2j + 3k) ,
x = 3 + t
y = 2 + 2t
z = 1 + 3t







t ∈ R ,

x − 3 =
y − 2

2
=

z − 1

3

(ii) r = k + tk = (1 + t)k = sk ,
x = 0
y = 0
z = s







s ∈ R , x = y = 0

(iii) r = 2i − k + t(−i + 2j − 3k) ,
x = 2 − t
y = 2t
z = −1 − 3t







t ∈ R ,

x − 2

−1
=

y

2
=

z + 1

−3

(iv) r = t(j + k) ,
x = 0
y = t
z = t







t ∈ R , x = 0 , y = z

(v) r = −4i− 3j + t(j− k) ,
x = −4
y = −3 + t
z = −t







t ∈ R , x = −4 , y + 3 = −z

(vi) r = i + k + t(i − j) ,
x = 1 + t
y = −t
z = 1







t ∈ R , x − 1 = −y , z = 1



5.2. (i) r = 3i + 2j + k + t(i − k) ,
x = 3 + t
y = 2
z = 1 − t







t ∈ R ,

x − 3 = 1 − z , y = 2

(ii) r = k + t(i − k) ,
x = t
y = 0
z = 1 − t







t ∈ R , x = 1 − z , y = 0

(iii) r = 2i + k + t(2i + 7j − 4k) ,
x = 2 + 2t
y = 7t
z = 1 − 4t







t ∈ R ,

x − 2

2
=

y

7
=

z − 1

−4

(iv) r = i + j + k + t(i + j) ,
x = 1 + t
y = 1 + t
z = 1







t ∈ R , x = y , z = 1

5.3. The lines are identical since they are both parallel to 4i+3j+5k and contain (1, 2, 10).

5.4. Vectors in the directions of the lines are 2i+3j+5k and 3i−2j−k respectively, which
are not parallel. If the lines intersect then

1 + 3s + 3

2
=

6 − 2s

3
=

15 − s − 4

5

for some s. But the first equation implies s = 0 and the second implies s = −3/7,
which is a contradiction. This proves that the lines are skew.

5.5. (i) L1 : r = i + j + k + t(5i − 4j − 2k) ,
x = 1 + 5t
y = 1 − 4t
z = 1 − 2t







t ∈ R ,

x − 1

5
=

y − 1

−4
=

z − 1

−2

L2 : r = 5i−5j−3k+s(−3i+8j+6k) ,
x = 5 − 3s
y = −5 + 8s
z = −3 + 6s







s ∈ R ,

x − 5

−3
=

y + 5

8
=

z + 3

6
(ii) T = (7/2,−1, 0)

(iii) The coordinates of T are the averages of those of P and R and also of Q and
S, so T is the midpoint of PR and QS. This is not surprising since PQRS is a
parallelogram.

5.6.∗ (i) same line, zero rotation (ii) 90◦ rotation (iii) 180◦ rotation

(iv) 90◦ − θ rotation where θ is the angle between v and w.

5.7.∗ Observe that
−→
OR = λ

−→
OP + (1 − λ)

−→
OQ =

−→
OQ + λ

−→
QP .

(i) 0 ≤ λ ≤ 1 (ii) λ > 1 (iii) λ < 0 (iv) λ = 1/3 or λ = −1

5.8.∗
√

2275/13 5.9.∗∗ 4/
√

3 , (2, 25/3,−22/3) , (2/3, 29/3,−6)

5.10.∗ Interpret r′ as the velocity of the particle on C at time t. Split the limit into components.



Chapter 6 Planes in Space

6.1. −x + y + 3z = −25 6.2. (i) x + y + z = 0 (ii) 101x + 22y − 8z = 256

6.3.

x = 3t
y = −1 + t
z = −7 + 7t







t ∈ R ,
x

3
= y + 1 =

z + 7

7
6.4. −

√
2

3

6.5. Take Q = (d/a, 0, 0) if a 6= 0 , Q = (0, d/b, 0) if b 6= 0 and Q = (0, 0, d/c) if c 6= 0 .
Take n = ai + bj + ck in all cases. If a = b = c = d = 0 then the equation is satisfied
by all points in space. If a = b = c = 0 6= d then no points satisfy the equation.

6.6. If Q = R then
−→
PQ · −→PR =

∣

∣

−→
PQ|2 > 0. If Q 6= R then as one travels from Q to R in

a straight line, the distance to P is decreasing, so the angle QPR must be acute, so−→
PQ · −→PR > 0.

6.7.∗ 32
√

3/9 ,

(

− 113

27
,

86

27
,

29

27

)

6.8.∗
(

i +
∂f

∂x
k

)

×
(

j +
∂f

∂y
k

)

= k− ∂f

∂y
j− ∂f

∂x
i

6.9.∗ The equation describes a sphere of radius r centred at the origin. The tangent plane
has equation x0x ±

√

r2 − x2
0 y = r2 , when x2

0 + y2
0 = r2, or otherwise

z − z0 =
±x0

√

r2 − x2
0 − y2

0

(x − x0) +
±y0

√

r2 − x2
0 − y2

0

(y − y0) .

6.10.∗ The intersection points are

(

0,
±100

t − 10
,
t
√

101

t − 10

)

. As t → −∞, z →
√

101.

Chapter 7 Systems of Linear Equations

7.1. (1, 2,−3) 7.2. x1 = −4t

3
, x2 = 1 +

t

3
, x3 = t

7.3. x1 = 1 − s − t

2
, x2 =

1

2
− t

2
, x3 = s , x4 = t , x5 =

1

2

7.4. x1 = −2s , x2 =
1

2
(3 + 3s − 2t) , x3 =

1

2
(1 + 9s − 4t) , x4 = s , x5 = t

7.5. x = y = z = 0 7.6. x1 = x2 = 0 , x3 = x4 = t

7.8∗ (i) Different systems produce different augmented matrices, and every augmented
matrix arises from some system. (ii) To operate on the system and then form the
augmented matrix has the same effect as forming the augmented matrix and then
performing the corresponding elementary row operation.

7.9.∗ (i) f(n) = n2 (ii) g(n) = n2(n + 1) , including operations with zeros

7.10.∗∗ Each reduced row echelon matrix corresponds to a homogeneous system. As the matrix
varies, so does the solution set of the corresponding homogeneous system. Since the
solution sets are invariant under elementary row operations, the reduced echelon forms
cannot be row equivalent.



Chapter 8 Matrix Operations

8.1. (i)

[

2 4
0 6

]

(ii)

[

6 −3
−4 −1

]

(iii)

[

−5 5
4 4

]

(iv)

[

7 −1
−4 2

]

(v)

[

1 8
0 9

]

(vi)

[

2 5
12 3

]

(vii)

[

−6 −3
4 11

]

(viii) −3 (ix)





−13
−6
−1



 (x) −64

8.2.

[

cos(α + β) − sin(α + β)
sin(α + β) cos(α + β)

]

8.3. (X +Y )2 = X2 +2XY +Y 2 ⇐⇒ X2 +XY +Y X +Y 2 = X2 +XY +XY +Y 2

⇐⇒ Y X = XY ⇐⇒ −XY + Y X = 0
⇐⇒ X2 −XY + Y X − Y 2 = X2 − Y 2 ⇐⇒ (X + Y )(X − Y ) = X2 − Y 2

8.4. A0n×n = 0m×mA = 0m×n and 0n×n 6= 0m×m 6= 0m×n

8.5. (i) c = 3(2x + 3y) − 5(x − 4y) = x + 29y , d = 2(2x + 3y) + 3(x − 4y) = 7x − 6y

(ii)

[

c
d

]

=

[

3 −5
2 3

] [

2 3
1 −4

] [

x
y

]

=

[

1 29
7 −6

] [

x
y

]

=

[

x + 29y
7x − 6y

]

8.6∗ Suppose x1 + λ(x1 − x2) = x1 + µ(x1 − x2) . Then (λ − µ)(x1 − x2) = 0 so that
(λ−µ)z = 0 for all entries z in x1 −x2 . But at least one value of z is nonzero, since
x1 6= x2 . It follows that λ − µ = 0 , that is, λ = µ .

8.7.∗ (i)

[

1 nk
0 1

]

(ii)

[

kn nkn−1

0 kn

]

(iii)





kn nkn−1 n(n−1)
2

kn−2

0 kn nkn−1

0 0 kn





8.8.∗ (Y Z)T =
[
∑

j yijzjk

]T
=

[
∑

j ykjzji

]

=
[
∑

j zjiykj

]

=
[

zji

][

ykj

]

= ZT Y T

8.9.∗ A(B + C) =
[
∑

j aij(bjk + cjk)
]

=
[
∑

j aijbjk

]

+
[
∑

j aijcjk)
]

= AB + AC ,

(A + B)C = (CT (AT + BT ))T = (CT AT + CT BT )T = AC + BC

8.10.∗ (AB)C =
[
∑

j
aijbjk

][

ckl

]

=
[
∑

jk
aijbjkckl

]

=
[

aij

][
∑

k
bjkckl

]

= A(BC)

Chapter 9 Matrix Inverses

9.1. Let A be p × q and B be r × s. Since AB and BA are defined, q = r and s = p. But
p = n, since AB = In, and r = n since BA = In, whence p = q = r = s = n.

9.2. (i)
1

3

[

3 −2
0 1

]

(ii)
1

18

[

−1 3
4 6

]

(iv)

[

cos α sin α
− sin α cos α

]

(v)





2 2 −1
−1 −2 1
−1 −1 1





(vi)





33 −17 9
−11 6 −3
−4 2 −1



 (viii)
1

2





−1 1 1
1 −1 1
1 1 −1



 (ix)









1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1











9.3. Observe that (AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I and similarly
(B−1A−1)(AB) = I.

9.4. Let M =

[

a b
c d

]

. We consider the case a 6= 0. (The case c 6= 0 is similar.) Then

[

a b
c d

1 0
0 1

]

∼
[

1 b/a
c d

1/a 0
0 1

]

∼
[

1 b/a
0 (ad − bc)/a

1/a 0
−c/a 1

]

.

If ad − bc = 0 then the left hand side has a row of zeros so M is not invertible. If
ad − bc 6= 0 then we proceed further:

[

a b
c d

1 0
0 1

]

∼
[

1 b/a
0 1

1/a 0
−c/(ad − bc) a/(ad − bc)

]

∼
[

1 0
0 1

d/(ad − bc) −b/(ad − bc)
−c/(ad − bc) a/(ad − bc)

]

,

so that M−1 exists and equals
1

ad − bc

[

d −b
−c a

]

.

9.5. Matching dimensions as in Exercise 9.1, we see that B is n × n and C is m × m. Let
i be an integer from 1 to n. Let A be any m × n matrix with first row consisting
of 0 everywhere except for 1 in the ith place. Then the first row of A = AB is also
[

bi1 bi2 · · · bin

]

, so that bij =

{

0 if i 6= j
1 if i = j

, which proves B = In. A similar

argument using the first column of A shows C = Im.

9.6∗ Draw diagrams of matrices for each type of elementary row operation, and carefully
keep track of labels of rows and columns.

9.7.∗ The first part is immediate by inspection and Exercise 9.6. Suppose A is invertible so
by the recipe for finding A−1 we have I = Em . . . E1A for some elementary matrices
E1, . . . , Em. Then, by Exercise 9.3,

E−1
1 . . . E−1

m = (Em . . . E1)
−1I = (Em . . . E1)

−1Em . . . E1A = IA = A

which proves, by the first part, that A is a product of elementary matrices.

9.8.∗ Suppose E1, . . . , Em are elementary such that Em . . . E1A has a row of zeros. If A is
invertible then I = (Em . . . E1A)A−1E−1

1 . . . E−1
m has a row of zeros, which is nonsense.

9.9.∗ Suppose AB = I. By the recipe for finding inverses, if a row of zeros appears then a
contradiction is reached as in the previous exercise. Hence there must be elementary
matrices E1, . . . , Em such that Em . . . E1A = I. Hence B = IB = Em . . . E1AB =
Em . . . E1I = Em . . . E1, yielding AB = BA = I.

9.10.∗ Suppose m < n. (The case n < m is similar.) Inspecting dimensions shows that A is
n × m and B is m × n. Since n > m, row reducing A must produce a row of zeros.
Hence there are elementary n × n matrices E1, . . . , Ek such that Ek . . . E1A has a row
of zeros. But then the invertible matrix Ek . . . E1 = Ek . . . E1In = Ek . . . E1AB must
have a row of zeros, and a contradiction is reached in the same way as in Exercise 9.8.



Chapter 10 Determinants

10.1. (i) −1 (ii) 1 (iii) 14 (iv) 126 (v) 82 (vi) bd(c−d) (vii) (t2 −4)(t+4) (viii) −4

10.2. (i) anticlockwise (ii) clockwise 10.3. (i) inside (ii) outside (iii) on the boundary

10.4. The given equations have a unique solution if and only if the matrix equation
[

a b
c d

] [

x
y

]

=

[

k
ℓ

]

has a unique solution, which occurs if and only if the matrix

[

a b
c d

]

is invertible,

which occurs if and only if its determinant ad − bc is nonzero.

10.5∗ (i) Suppose that A has a row of zeros. The induction starts trivially. Suppose that
the result holds for square matrices of size less than n where n ≥ 2. If the first
row of A is zero then det A =

∑

(−1)1+j 0 det A1j = 0 . If the ith row of A is
zero where i > 1 then, by the inductive hypothesis,

det A =
∑

(−1)1+j a1j det A1j =
∑

(−1)1+j a1j 0 = 0 ,

and the result follows by induction. Suppose now that A has a column of ze-
ros. Again the induction starts trivially and we make a corresponding inductive
hypothesis. If it is the kth column of A which is zero then

det A =
∑

j 6=k

(−1)1+j a1j det A1j + (−1)1+k a1k det A1k

=
∑

j 6=k

(−1)1+j a1j 0 + (−1)1+k 0 det A1k = 0 ,

and again we are done by induction.

(ii) The lower triangular case is a simple induction. In the case that A is upper
triangular, A11 is also upper triangular and A1j has its first column all zero for
j > 1, so that, by part (i), det A = a11 det A11, and again the result follows by a
simple induction.

(iii) The proof is by induction on the size of B.

10.6.∗ This is a simple induction using the fact that A12 is another matrix of the same shape.

10.7.∗ The first two cases follow immediately from 10.5(ii), since the elementary matrices are
upper or lower triangular. The last case follows by 10.5(iii) and 10.6 and a simple
induction.

10.8.∗∗ If B is the result of interchanging two rows of A then det B = − det A by an elaborate
induction that splits up into cases depending on whether the first row is involved in
the interchange. It follows quickly that if two rows of A are identical then det A = 0.
If B is the result of multiplying a row of A by the scalar λ then det B = λ detA, by a
simple induction. Finally if B is the result of adding a scalar multiple of one row of A
to another row then det B = det A, using the previous results of this exercise and the
fact that if C, D, E are identical square matrices except that for some i the ith row
of E is the sum of the ith rows of C and D then det E = det C + det D, which itself
follows by a simple induction.



10.9.∗∗ (i) The first step is to prove that A is invertible if and only if det A 6= 0, and
this follows from the previous exercise and the fact that a matrix is invertible if
and only if it can be row reduced to the identity matrix. If A is not invertible
then it is easy to show AB also is not invertible, so det AB = 0 = det A detB.
If A is invertible then A is a product of elementary matrices and the equality
det AB = det A det B now follows by the previous exercise and a simple induction.

(ii) If A is not invertible then AT also is not invertible, so from the proof of part
(i), det A = 0 = det AT . If A is invertible then it is a product of elementary
matrices and the result follows by a simple induction after first checking that
det E = det ET where E is elementary by 10.7.

(iii) The result about expanding along the ith row follows by using the matrix B
obtained from A by interchanging rows to bring the ith row to the top and the
fact that interchanging rows multiplies the determinant by −1, so that det B =
(−1)i−1 det A. The result about expanding down any column follows from the
result about rows and part (ii).

10.10.∗ Suppose A is a square matrix with nonzero determinant. Row reduce A, so that
Ek . . . E1A = J where E1, . . . , Ek are elementary and J is in reduced row echelon form.
If J 6= I then J has a row of zeros so has zero determinant by 10.5(ii), so, by the
multiplicative property and the fact that elementary matrices are invertible,

det A = det(Ek . . . E1)
−1 det J = det(Ek . . . E1)

−1 0 = 0 ,

which is a contradiction. Hence J = I and A = Ek . . . E1 is invertible.

Chapter 11 Eigenvalues and Eigenvectors

11.1. (i) eigenvalues 1, 2 with eigenspaces

{[

0
t

]
∣

∣

∣

∣

t ∈ R

}

,

{ [

t
t

]
∣

∣

∣

∣

t ∈ R

}

respectively

(ii) eigenvalues 2, 3 with eigenspaces

{ [

t
t

]
∣

∣

∣

∣

t ∈ R

}

,

{ [

t
2

t

]
∣

∣

∣

∣

t ∈ R

}

respectively

(iii) eigenvalues 1, 2, 3 with eigenspaces

{





t
0
0





∣

∣

∣

∣

t ∈ R

}

,

{





t
t
0





∣

∣

∣

∣

t ∈ R

}

,

{





0
−t

t





∣

∣

∣

∣

t ∈ R

}

respectively

(iv) eigenvalue 2 with eigenspace

{ [

t
t

]
∣

∣

∣

∣

t ∈ R

}

(v) eigenvalues −1, 1, 3 with eigenspaces

{





t
0
t





∣

∣

∣

∣

t ∈ R

}

,

{





t
−t

t





∣

∣

∣

∣

t ∈ R

}

,

{





t/2
t/2
t





∣

∣

∣

∣

t ∈ R

}

respectively

(vi) eigenvalues 1, 2 with eigenspaces

{





t
t
0





∣

∣

∣

∣

t ∈ R

}

,

{





t/2
t
s





∣

∣

∣

∣

s, t ∈ R

}

respectively



11.2. If Mv = λv then Mkv = Mk−1Mv = Mk−1λv = λMk−1v = · · · = λkv .

11.3. Suppose Mv = λv where v is a nonzero vector. If λ = 0 then Mv = 0v = 0 , so
v = M−1Mv = M−10 = 0 , which is a contradiction. Hence λ 6= 0 and

v = Iv = M−1Mv = M−1λv = λM−1v ,

so that M−1v = λ−1v . This proves λ−1 is an eigenvalue of M−1 with eigenvector v .

11.4. The formula still holds for n ≤ 0 since

[

2 0
0 3

]n

=

[

2n 0
0 3n

]

always.

11.5∗ Since the determinant is unchanged under transposition,

det(MT − λI) = det(MT − λIT ) = det(M − λI)T = det(M − λI) ,

so the characteristic polynomials of MT and M have the same solutions.

11.6.∗ The Conjugation Principle can be expressed by the equation Z = XY X−1 where Z
is difficult, Y is easy, and X changes the environment or conditions to facilitate the
performance of Y . In the proof template, Z represents the final proof, X the expansion
step, X−1 the contraction step, and Y the ‘easy’ steps in between. In the train example,
Z represents the process of getting from Bondi Junction to Redfern, X hopping on the
train, X−1 hopping off the train, and Y the process of sitting on the train until the
appropriate time to alight. In the cake example, Z = XY WX−1W−1 where Z is the
process of baking the cake, Y is the process of mixing the ingredients, X the process of
putting the cake in the oven and W the process of putting on oven mitts so as not to
get burnt in the act X−1 of taking the cake out of the oven. To complete the process
one performs W−1, which is to remove the oven mitts.

11.7.∗ This is a simple induction using as inductive hypothesis that the determinant of a
square matrix with entries which are polynomials in λ is also a polynomial in λ. The
determinant expansion along the first row then becomes a sum of polynomials, which
is itself a polynomial.

11.8.∗ This follows by row reducing the noninvertible square matrix A, which guarantees a
row of zeros. Solving the associated homogeneous system yields a parametric solution.
Picking one nonzero instance gives a nonzero vector v such that Av = 0.

11.9.∗ By a simple induction, Mn =

[

cos nθ − sin nθ
sin nθ cos nθ

]

. If Mn = I then nθ = 2πk for

some integer k, so that π = nθ/(2k) ∈ Q , which is absurd, since π is irrational.

11.10.∗ The matrix M =

[

cos θ − sin θ
sin θ cos θ

]

has eigenvalues cos θ + i sin θ and cos θ − i sin θ

with eigenspaces

{[

it
t

]
∣

∣

∣

∣

t ∈ C

}

and

{[

−it
t

]
∣

∣

∣

∣

t ∈ C

}

respectively.

Chapter 12 Diagonalising a Matrix

12.1. (i)

[

1+(−1)k

2
−1+(−1)k

2
−1+(−1)k

2
1+(−1)k

2

]

(ii)

[

2k 0
2k − 1 1

]

(iii)

[

2k+1 − 3k −2k + 3k

2k+1 − 2(3k) −2k + 2(3k)

]



12.2. (i)





1 2k − 1 2k − 1
0 2k 2k − 3k

0 0 3k



 (ii)





3(−1)k − 3k − 1 (−1)k − 1 1 − 2(−1)k + 3k

1 − 3k 1 3k − 1
3(−1)k − 2(3k) − 1 (−1)k − 1 1 − 2(−1)k + 2(3k)





(iii)





2 − 2k 2k − 1 0
2 − 2k+1 2k+1 − 1 0

0 0 2k





12.3. The columns add to 1 so the matrix is regular stochastic. The steady state vector is

[

4
9
5
9

]

and Mn =

[

4
9

+ 5
9

(

1
10

)n 4
9
− 4

9

(

1
10

)n

5
9
− 5

9

(

1
10

)n 5
9

+ 4
9

(

1
10

)n

]

→
[

4
9

4
9

5
9

5
9

]

.

12.4.∗ The entries of M2 are all positive. The steady state vector is





1
3
1
3
1
3



 and Mn =





1
3

+ 2
3

(

− 1
2

)n 1
3
− 1

3

(

− 1
2

)n 1
3
− 1

3

(

− 1
2

)n

1
3
− 1

3

(

− 1
2

)n 1
3

+
(

1
2

)n+1
+ 1

6

(

− 1
2

)n 1
3
−

(

1
2

)n+1
+ 1

6

(

− 1
2

)n

1
3
− 1

3

(

− 1
2

)n 1
3
−

(

1
2

)n+1
+ 1

6

(

− 1
2

)n 1
3

+
(

1
2

)n+1
+ 1

6

(

− 1
2

)n



 →





1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3



 .

12.5∗ The identity matrix

[

1 0
0 1

]

is stochastic with steady state vectors

[

1
0

]

and

[

0
1

]

.

The matrix M =

[

0 1
1 0

]

is stochastic with a unique steady state vector v =

[

1
2
1
2

]

.

The vector x =

[

−1
1

]

has the property that lim
n→∞

Mnx does not exist.

12.6.∗ and 12.7.∗ These are special cases of 12.9.∗∗

12.8.∗ If P T can be row reduced to a matrix with a row or zeros then the associated ho-
mogeneous system has a nonzero solution, which implies that vT

1 , . . . ,vT
n are linearly

dependent, contradicting that v1, . . . ,vn are linearly independent. Hence P T can be
row reduced to the identity matrix, so that P T and P are invertible.

12.9.∗∗ Suppose µ1v1 + . . . + µnvn = 0. Apply M and the definition of eigenvector to get
another equation. Combine the two equations to eliminate one of the vectors, and
then apply an inductive hypothesis, exploiting the assumption that the eigenvalues are
distinct, to deduce that µ1 = . . . = µn = 0.

12.10.∗∗∗ Let M be a complex 2 × 2 matrix. If the eigenvalues are distinct then M is diagonal-
isable by the previous exercise. Similarly if M has one eigenvalue whose eigenspace
is two dimensional then again M is diagonalisable. If remains therefore to suppose
M has one eigenvalue λ and its eigenspace is one dimensional. Using the fact that

(M − λI)2 = 0, and by solving equations, one can find vectors v and w =

[

1
0

]

or

w =

[

0
1

]

such that M
[

v w
]

=
[

v w
]

[

λ 1
0 λ

]

. In the real case, either the

eigenvalues are real and the result follows quickly, or the eigenvalues form a complex
conjugate pair, and then the result follows by finding the respective one-dimensional
complex eigenspaces and then separating the diagonalising matrix equation into real
and imaginary parts.


