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Abstract

The Earth’s main magnetic field is generally believed to be due to a dynamo process in
the Earth’s fluid outer core. A variety of antidynamo theorems exist that define conditions
under which a magnetic field cannot be indefinitely maintained by dynamo actions against
ohmic decay. One such theorem, the Planar Velocity Antidynamo Theorem, precludes field
maintenance when the flow is everywhere parallel to some plane, e.g. the equatorial plane.
This paper shows that the proof of the Planar Velocity Theorem fails when the flow is
confined to a finite volume, so that then the theorem reverts to a conjecture. The paper also
formulates the toroidal-poloidal spectral form of the magnetic induction equation for planar
flows, as a basis for a numerical investigation. We have thus numerically determined the
magnetic fields induced by various planar flows in spheres. In all but one flow the induced
magnetic field has been found to decay in time, supporting a planar velocity conjecture.
However one model is suggestive that field growth may occur. These results highlight the
need for a mathematical proof of the conjecture, or alternatively, the determination of a
functioning planar velocity dynamo.

1 Introduction

The Earth’s main magnetic field exhibits behaviour on timescales ranging from seconds to mil-
lennia. Characteristics over longer timescales of 10 − 108 years include secular variation, polar
wandering, polarity reversals, and long term maintenance. The dynamo hypothesis, that such
large scale behaviour is due to MHD interactions in the Earth’s fluid core, is due to Larmor [16].
The feasibility of this hypothesis has been well established by numerous numerical kinematic
and dynamic investigations, and the establishment of dynamical benchmark computer codes [3],
[6], [5].

However, from almost the beginning of dynamo theory, so-called antidynamo theorems have
hindered the construction of simple models based on laminar flows. Such theorems rule out
magnetic field maintenance when certain simplifying geometric constraints are imposed either
on the flow or the magnetic field. The known theorems where the constraints are in terms of
spherical coordinates (r, θ, φ), are
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1. Cowling’s theorem: This rules out the maintenance of an axisymmetric magnetic field B
by an incompressible flow. It may be extended to an Axisymmetric Theorem (AT) that
holds in quite general conditions [7], including compressible flow and non-uniform electrical
conductivity.

2. The Toroidal Velocity Theorem (TVT): This rules out field maintenance by a purely
toroidal fluid velocity v, where v = ∇× (t r) for some defining scalar t. The TVT can be
extended to the Non-Radial Velocity Theorem (NRVT), that precludes maintenance of a
magnetic field by flows where vr = 0 but ∇ · v 6≡ 0 [9].

3. The Radial Velocity Theorem (RVT): The RVT rules out maintenance by radially symmet-
ric flows v = vr(r, t)er [18], [8]. An offshoot of the TVT and RVT is the Symmetric Velocity

Theorem (SVT) which rules out field maintenance by flows of the form vr(r, t)er+vT where
∇ · v = vT · er = 0 [10]. The SVT does not supersede the RVT or TVT since the senses
of decay are mathematically different.

4. The Toroidal Field Theorem (TFT): This precludes the maintenance of a purely toroidal
magnetic field B = ∇× (Tr) [14].

It is notable that there is no poloidal analog to the TVT, i.e. a magnetic field may be maintained
by a purely poloidal flow [17]. However, a partial result has been established towards proving a
poloidal analog of the TFT, in that it has been shown under certain assumptions that a purely
poloidal magnetic field can not be maintained [13].

Various analogous results exist in cartesian coordinates. Cowling’s Theorem corresponds to a
2-dimensional theorem, where a magnetic field B independent of one cartesian coordinate is
ruled out [4]. And the TVT corresponds to a Planar Velocity Theorem (PVT) which precludes
maintenance of B by incompressible flow with no z-component, i.e.

v = ∇× (fez) . (1)

The conditions under which the PVT holds are central for this paper. In §2.2 it will be argued
that a proof for the PVT has not been established when the conducting fluid volume is a sphere,
the context of primary interest in rotating bodies such as the Earth. In §3.1 we derive toroidal-
poloidal spectral equations, to be used later in §5 for a numerical investigation of specific planar
velocity models.

2 The Planar Velocity Theorem

In this section we consider two cases: (a) where the conducting fluid occupies all space V∞, and
(b) where the fluid occupies a spherical volume V , of radius a and surface Σ, surrounded by free
space V̂ . The fluid is assumed to have constant electric conductivity σ, and magnetic diffusivity
η = 1/(µσ) where µ is the free space permeability.

For prescribed fluid velocity v, the magnetic field B evolves according to

∂B

∂t
= ∇× (v ×B) + η∇2B , in V , (2a)

∇×B = 0 , in V̂ . (2b)
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2.1 The PVT for an Infinite Fluid

Suppose the fluid occupies all space, that v·ez = 0, and that v and B decrease sufficiently fast as
r →∞ , as detailed below. Then either B ≡ 0, or B decays as t→∞ . The details of the sense
of decay are given in the following proof, derived from that of Zel’dovich and Ruzmaikin [22].

The z-component of (2a) is
∂Bz

∂t
= −v · ∇Bz + η∇2Bz, (3)

Applying the divergence theorem yields

∂

∂t

∫

V

B2z
2
dV = −

∫

Σ
(v
B2z
2
) · dΣ+ η

∫

Σ
(Bz∇Bz) · dΣ− η

∫

V
(∇Bz)

2 dV , (4)

where dΣ = dΣer = r2 sin θ dθ dφ er is the outward directed surface differential. Letting a→∞
gives

∂

∂t

∫

V∞

B2z
2
dV = −η

∫

V∞

(∇Bz)
2 dV ≤ 0 , (5)

assuming vB2z , Bz∇Bz are o(1/r
2) as r →∞ . Then, either Bz ≡ 0, or ‖Bz‖2 =

√(∫
V∞

B2z dV
)

decays strictly monotonically with t.

To show decay of Bx, By, introduce scalars φ, Φ, such that

Bx =
∂Φ

∂y
+
∂φ

∂x
, By = −

∂Φ

∂x
+
∂φ

∂y
.

Letting ∇2h ≡ ∂2/∂x2 + ∂2/∂y2 , ∇ ·B = 0 implies

∇2h φ = −
∂Bz

∂z
,

and hence

φ = − 1
2π

∫
log |r− r′|

(
∂Bz

∂z

)′
dx′ dy′ , (6)

where the integral is over a plane with z′ = z fixed. From (6) one infers that φ ≡ 0 or decays as
t → ∞, following the behaviour of Bz. So asymptotically as t → ∞, B = ∇× (Φez) . For this
B, uncurling (2a) yields

∂Φ

∂t
= −(v · ∇Φ) + η∇2Φ+ ∂ψ

∂z
, (7)

where ψ = ψ(z, t) . Let Φ($, z) := (1/A)
∫
A Φ dA where the average is over the disc A of radius

$, at fixed z. Averaging (7), and applying the divergence theorem in the plane, yields

∂Φ

∂t
=
1

A

∫

C

(
η
∂Φ

∂$
− v$Φ

)
dC + η

∂2Φ

∂z2
+
∂ψ

∂z
, (8)

where the line integral is around the perimeter C of A. Since Φ can be adjusted by adding a
function of z without affecting Bh, we may take Φ(∞, z) = 0 . Letting $ →∞ in (8) then shows
that ∂ψ/∂z ≡ 0 . Assuming vΦ2, Φ∇Φ are o(1/r2) as r →∞, applying the divergence theorem
to (7) implies

∂

∂t

∫

V∞

Φ2 dV = −η
∫

V∞

(∇Φ)2 dV .

Thus Φ ≡ 0 or ‖Φ‖2 decays strictly monotonically.
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2.2 Failure of the PVT for a conducting sphere

The PVT is commonly thought to apply when the conducting fluid is confined to a finite volume
(e.g. [19].) To consider this, let (· · ·)± represent values on the inside (−) and outside (+) of Σ,
and [· · · ]+− = (· · · )+ − (· · · )− represent the jump across Σ.

If the boundary is fixed, vr = 0 at r = a. In this case, (4) reduces to

∂

∂t

∫

V

B2z
2
dV = η

∫

Σ
(Bz∇Bz)

− · dΣ− η
∫

V
(∇Bz)

2 dV . (9)

Since the current sources are confined to V , then Bz = O(1/r3) as r → ∞. Applying the
divergence theorem, the z-component of (2b) yields

∫

V̂
(∇Bz)

2 dV =

∫

Σ
(Bz∇Bz)

+ · dΣ . (10)

Combining (9), (10), and using the continuity of Bz across Σ, leads to

∂

∂t

∫

V

B2z
2
dV = −η

∫

Σ
Bz

[
∂Bz

∂r

]+

−
dΣ− η

∫

V∞

(∇Bz)
2 dV . (11)

In general ∂Bz/∂r is discontinuous across Σ. The first term on the RHS of (11) therefore prevents
a conclusion about the decay of Bz. The initial-value problem defined by (2), with initial value
B = B(r, 0), has a unique solution if B is continuous across Σ. To impose continuity on ∂Bz/∂r
would in general result in that initial-value problem being over-determined, with no solution.

All antidynamo theorems summarized in §1 rely on the induction equation (2a) decoupling
somehow. In the PVT of §2.1, the induction equation for Bz has decoupled so that there is no
generation of Bz from the horizontal component Bh, and Bz decays, if not identically zero. This
decoupling depends on vz = 0, and η being constant in V∞. Introducing the boundary r = a
as in §2.2 has introduced variable η, and allowed diffusive coupling between Bz from Bh at the
boundary. An alternative view is obtained by considering continuity conditions across Σ, and
rewriting [∂Bz/∂r]

+
− in terms of the electric current density j = µ−1∇ × B. Since ∇ · B = 0

implies [∂Br/∂r]
+
− = 0, then
[
∂Bz

∂r

]+

−
=

[
∂

∂r
(Br cos θ −Bθ sin θ)

]+

−
= − sin θ

[
∂Bθ

∂r

]+

−
.

Also, since [∂Br/∂θ]
+
− = 0, and j

+
φ = 0,

µj−φ =
1

r

(
∂(rBθ)

∂r
− ∂Br

∂θ

)−
=
1

r

(
∂(rBθ)

∂r

)−
− 1
r

(
∂Br

∂θ

)+
= −

[
∂Bθ

∂r

]+

−
.

So the coupling term on the RHS of (11) is

η

∫

Σ
Bz

[
∂Bz

∂r

]+

−
dΣ =

1

σ

∫

Σ
sin θ j−φ Bz dΣ =

1

σ

∫

Σ−
sin θ jφBz dΣ . (12)

The presence of the boundary r = 1 must promote the existence of tangential currents, generally
with a jφ component. So the coupling term may be significant. However Bz on Σ is an integrated
contribution from j throughout V . So the sign of (12) is unknown. If the sign is negative, then
(12) may act as a generation term in (11). Given the lack of a proof of decay in the present
case, we therefore investigate numerical solutions to see if growing magnetic fields can be found.
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3 Numerical Methods

The non-dimensionalized form of the induction equation (2a) is

∂B

∂t
= R∇× (v ×B) +∇2B . (13)

Here R=UL/η is the Reynolds number, based on characteristic speed U and length L, with
t measured on the diffusion time scale L2/η. For the angular coordinates θ, φ, we employ a
spherical harmonic spectral representation as described in §3.1. For solution of the resulting
radial equations we employ both finite differences and Chebyshev collocation as described in
§3.3.

3.1 The Spherical Harmonic Spectral Equations

We represent B and v in poloidal–toroidal formalism, using scalars S, T and s, t respectively:

B = ∇× (rT ) +∇× (∇× rS) , (14)

v = ∇× (r t) +∇××(∇× r s) ; (15)

and expand these scalars in spherical harmonics,

T =
∑

n,m

Tmn Y
m
n , S =

∑

n,m

Smn Y
m
n , t =

∑

n,m

tmn Y
m
n , s =

∑

n,m

smn Y
m
n , (16)

where m = −n, . . . , n and n = 1, 2, 3, . . .. We denote the individual vector modes of B by
Tm
n = ∇× (rTmn Y m

n ), S
m
n = ∇× (∇× rSmn Y

m
n ), and similarly for v, t

m
n , s

m
n .

In the above,

Y m
n = (−)mY −mn = (−)m

[
2n+ 1

2− δ0m

] 1

2

Pm
n (cos θ)e

imφ , (17)

where

Pm
n (µ) =

[
(2− δ0m)(n−m)!

(n+m)!

] 1

2 (1− µ2)m/2
2nn!

[
d

dµ

]n+m
(µ2 − 1)n (18)

is the Schmidt-normalized Legendre function. The overbar (· · · ) denotes complex conjugate,
and δ0m is the Kronecker delta. Since B and v are real, (17) implies that

S−mn = (−)mSmn , T−mn = (−)mTmn , (19)

and similarly for smn and t
m
n .

With m-superscripts suppressed, and Dn ≡ ∂2/∂r2+(2/r)∂/∂r−n(n+1)/r2 , the spectral form
of (13) is

(
∂

∂t
−Dn3

)
Sn3

= R
∑

n1,n2

[(sn1
Sn2

Sn3
) + (sn1

Tn2
Sn3
) + (tn1

Sn2
Sn3
)] , (20)

(
∂

∂t
−Dn3

)
Tn3

= R
∑

n1,n2

[(sn1
Sn2

Tn3
) + (sn1

Tn2
Tn3
)

+ (tn1
Sn2

Tn3
) + (tn1

Tn2
Tn3
)] . (21)
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There is no interaction (tn1
Tn2

Sn3
) in (20) since a poloidal magnetic field can not be created by

the interaction of a toroidal flow and toroidal field. The original Bullard-Gellman formalism [1]
differs from the present formalism, so details of the interaction terms in (20), (21) are given
below. With p1 := n1(n1 + 1) and q1 := p1 − p2 − p3 etc,

(sn1
Sn2

Sn3
) =

{[
q3(p2 − p1)

sn1

r2
− p2q2

s′n1

r

]
Sn2

+p1q1
sn1

r
S′n2

} (−)m3A

8πp3
, (22)

(sn1
Tn2

Sn3
) =

p1
4πrp3

(−)m3E sn1
Tn2

, (23)

(tn1
Sn2

Sn3
) =

p2
4πrp3

(−)m3E tn1
Sn2

, (24)

(sn1
Sn2

Tn3
) =

{[
(p1 + p2 + p3)

sn1

r3
+ q3

s′n1

r2
− p2

s′′n1

r

]
Sn2

+q3
(sn1

r2
+
s′n1

r

)
S′n2

− p1
sn1

r
S′′n2

}
(−)m3E

4πp3
, (25)

(sn1
Tn2

Tn3
) =

{[
p3q3

(sn1

r2
+
s′n1

r

)
+ p1q1

s′n1

r

]
Tn2

+p1q1
sn1

r
T ′n2

} (−)m3A

8πp3
, (26)

(tn1
Sn2

Tn3
) =

{(
p3q3

tn1

r2
+ p2q2

t′n1

r

)
Sn2

+(p2q2 + p3q3)
tn1

r
S′n2

}
(−)1+m3A

8πp3
, (27)

(tn1
Tn2

Tn3
) =

(−)m3

4πr
E tn1

Tn2
. (28)

In (22)–(28), S ′ ≡ ∂S/∂r etc; and

A =

∫

4π
Y m1

n1
Y m2

n2
Y −m3

n3
sin θ dθ dφ , (29)

E =

∫

4π

(
∂Y m1

n1

∂θ

∂Y m2

n2

∂φ
− ∂Y m1

n1

∂φ

∂Y m2

n2

∂θ

)
Y −m3

n3
dθ dφ . (30)

are Adams and Elsasser coupling integrals, which can be evaluated using Wigner coefficients [11].

Equations (22)–(28) are solved subject to the conditions

Sn = Tn = 0 , at r = 0 , (31)

∂Sn
∂r

+ (n+ 1)Sn = Tn = 0 , at r = 1 . (32)

The velocity satisfies

sn = tn = 0 , at r = 0 , (33)

sn = 0 , at r = 1 , (34)

and sometimes

tn =
∂sn
∂r

= 0 , at r = 1 . (35)
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Equations (31) and (33) are required for differentiability of B and v with respect to x, y, z at
r = 0. Equations (32) reflect the continuity of B across Σ and the current-free nature of V̂ .
Equations (34) and (35) apply for a fixed boundary and no slip respectively.

3.2 Selection Rules and Field Decoupling

The A and E integrals in (29), (30) impose various selection rules [11] on the interaction terms
in (22)–(28):

SR1: (sn1
Sn2

Sn3
), (sn1

Tn2
Tn3
), and (tn1

Sn2
Tn3
) depend on A and are zero unless n1 + n2 + n3

is even, and |n1 − n2| ≤ n3 ≤ n1 + n2 .

SR2: (sn1
Tn2

Sn3
), (sn1

Sn2
Tn3
), (tn1

Sn2
Sn3
), and (tn1

Tn2
Tn3
) depend on E and are zero unless

n1 + n2 + n3 is odd, and |n1 − n2| < n3 < n1 + n2 .

SR3: (sn1
Sn2

Sn3
), . . . , (tn1

Tn2
Tn3
) are all zero unless m3 = m1 +m2.

For the present purposes it is convenient to classify the fields v and B as having dipole (D) or
quadrupole (Q) parity if their poloidal and toroidal components belong to one of the following
chains:-

D: S01 , S
1
1 , T

0
2 , T

1
2 , T

2
2 , S

0
3 , S

1
3 , S

2
3 , S

3
3 , T

0
4 , T

1
4 , T

2
4 , T

3
4 , T

4
4 , . . .

Q: T 01 , T
1
1 , S

0
2 , S

1
2 , S

2
2 , T

0
3 , T

1
3 , T

2
3 , T

3
3 , S

0
4 , S

1
4 , S

2
4 , S

3
4 , S

4
4 , . . .

(36)

Here, Smn denotes the presence of both S
m
n and S

−m
n and similarly for T . The D chain comprises

S-harmonics with odd n, and T -harmonics with even n; the Q chain comprises S-harmonics
with even n, and T -harmonics with odd n .

Rules SR1 and SR2 imply that if v has Q-parity, then B decouples into independent chains,
a D chain, and a Q chain. This decoupling greatly reduces the size of the matrices in the
computations described in §3.3. The decoupling is verified by considering the interactions shown
in Table 1 on the next page, where bold entries show the type of harmonic produced by the
various interactions. For example, (sn1

Sn2
Sn3
) must satisfy SR1, so is zero unless n1+n2+n3

is even. Thus, a Q-parity sn1
interacts with a D-parity Sn2

from chain D to produce a D-
parity Sn3

also in chain D. However a D-parity sn1
interacts with a D-parity Sn2

from chain
D to produce a Q-parity Sn3

that is not in chain D. Similar considerations lead to the chain-
preserving interactions shown asterisked in Table 1, and show that Q-parity sn, tn preserve
chains D and Q, whereas D-parity sn, tn destroy chains D and Q.

Independently of D-Q decouplings, the field can also be decoupled with respect to the order m,
using SR3. Suppose v only contains harmonics with orders m1 chosen from the set {m : m=
0 mod k} for some integer k. Then, allowing for ± m-pairs as required by (19), SR3 implies
that B decouples into independent chains containing harmonics with orders m2, m3 chosen from
one of the sets M`k := {m : m= ` mod k, or m=(k − `) mod k}, ` = 1, 2, . . .. For example, if
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Sn3
Tn3

Sn2
Tn2

Sn2
Tn2

Odd Even Odd Even Odd Even Odd Even
D Q Q D D Q Q D

sn1
Odd Even Odd Odd Even Odd Even Even Odd

D Q D D Q Q D D Q

Even Odd Even Even Odd Even Odd Odd Even

Q D* Q* Q* D* D* Q* Q* D*

tn1
Odd Odd Even Always Even Odd Odd Even

Q D* Q* zero D* Q* Q* D*
Even Even Odd Always Odd Even Even Odd

D Q D zero Q D D Q

Table 1: Toroidal and Poloidal Interactions.

m1 = 4, there are three decoupled B-chains:

M04 : m = 0 mod 4 : S01 , T
0
1 , S

0
2 , T

0
2 , S

0
3 , T

0
3 , S

0
4 , S

4
4 , T

0
4 , T

4
4 ,

S05 , S
4
5 , T

0
5 , T

4
5 , S

0
6 , S

4
6 , T

0
6 , T

4
6 , . . .

M14 : m = (1 or 3) mod 4 : S11 , T
1
1 , S

1
2 , T

1
2 , S

1
3 , S

3
3 , T

1
3 , T

3
3 , S

1
4 , S

3
4 ,

T 14 , T
3
4 , S

1
5 , S

3
5 , S

5
5 , T

1
5 , T

3
5 , T

5
5 , . . .

M24 : m = 2 mod 4 : S22 , T
2
2 , S

2
3 , T

2
3 , S

2
4 , T

2
4 , S

2
3 , T

2
4 , S

2
4 , T

2
4 ,

S25 , T
2
5 , S

4
5 , T

4
5 , S

2
6 , T

2
6 , S

4
6 , T

4
6 , S

6
6 , T

6
6 , . . .

Combining this m-decoupling with the D-Q decoupling in (36) further significantly reduces the
dimensions of the computational problem. We will denote such chains DM`k or QM`k .

3.3 The Radial Equations

For v stationary, B can be represented as a superposition of discrete modes:

B =
∑

λ

Bλ e
λt .

To find whether non-decaying modes exist we need to determine maxλ<{λ} . Having formed the
spectral equations (20), (21), we truncate the series (16) at some finite degree N . To validate
results we adopted a variety of numerical approaches for discretizing the radial direction: (a)
2nd-order finite-difference approximations, (b) 4th-order finite differences, and (c) Chebyshev
collocation. Method (a) was sometimes supplemented by Richardson extrapolation to give about
the same accuracy as method (b). Several independent computer programs were used, one based
directly on the spectral equations (22)–(28), and another using a Wigner coefficient form of the
spectral equations [12]. Results from all methods agreed satisfactorily.

For methods (a),(b) the range 0 ≤ r ≤ 1 was divided into J equal subintervals with grid points
rj = jh, (j = 0 : J). Difference approximations were applied to the truncated poloidal and
toroidal spectral equations (20),(21) at j=1:J−1, and to the poloidal equation at j = J .

For (a), centred-difference formulas were used for j = 1 : J − 1 . At the boundary the poloidal
equation (20) was discretized in either of two ways:-
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(i) with a centred formula for S ′′n using an external point rJ+1 , where Sn there was eliminated
by a centred difference approximation to the poloidal boundary condition (32a);

(ii) with the non-centred formula

f
(2)
0 =

−f−2 + 8f−1 − 7f0 + 6hf (1)0
2h2

+
1

6
f (4)(η)h2 , (37)

for f = S′′n, where f
(1)
0 = −(n+ 1)f0 by the poloidal boundary condition (32a).

Method (i) above is theoretically less accurate than (ii) since it introduces an O(h) term in the
difference equation for Sn at j = J . However for J & 200 no significant numerical difference
was found. On the other hand, the non-centred formula (37) in method (ii) produces a matrix
with a somewhat wider bandwidth, as shown by comparing Figures 1, 2, 3. All tables herein
show results from method (i), and other methods were used as a check.

For (b), centred-difference formulas were applied at j = 1 : J − 2 . At j = 1, the symmetry
property f(−r) = (−)nf(r) of f = Sn and Tn, was used. For the points j = J − 1 and j = J ,
non-centred formulas were used:-

f
(1)
0 =

−f−3 + 6f−2 − 18f−1 + 10f0 + 3f1
12h

− 1

20
f (5)(η)h4

f
(2)
0 =

f−4 − 6f−3 + 14f−2 − 4f−1 − 15f0 + 10f1
12h2

− 13

180
f (6)(η)h4

for f = Tn at j = J − 1, where f1 = 0 by boundary condition (32b);

f
(1)
0 =

f−2 − 9f−1 − 9f0 + 17f1 − 6hf (1)1
18h

+
1

60
f (5)(η)h4

f
(2)
0 =

3f−3 − 32f−2 + 252f−1 − 480f0 + 257f1 − 60hf (1)1
144h2

− 1

360
f (6)(η)h4

for f = Sn at j = J − 1, where f (1)1 = −(n+ 1)f1 by boundary condition (32a);

f
(2)
0 =

−9f−4 + 64f−3 − 216f−2 + 576f−1 − 415f0 + 300hf (1)0
72h2

+
1

15
f (6)(η)h4

for f = Sn at j = J , where f
(1)
0 = −(n+ 1)f0 by boundary condition (32a).

For method (c) expansions up to degree 2J containing Chebychev polynomials were used:

fmn (r) =
J∑

j=1

fmj,nr
qT2j−1(r) , f = T, S , (38)

where q = 1 if n is even or q = 0 if n is odd. The J collocation points rj = cos(jπ/2J),
j = 0 : J − 1 were used.

For a given magnetic Reynolds number R, each of the approaches (a),(b),(c), leads to an eigen-
value problem

Ax = λDx . (39)
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For methods (a),(b) D is the unit matrix, and for (c) D is a block-diagonal matrix with a block
of the form [rqi T2j−1(ri)] for each n.

Convergence was sought by increasing N, J . The solution of (39) was straightforward except
that very large dimensions were required in some cases.

The matrix A is very sparse and banded. Moreover, the matrix band itself has mostly zero
elements due to the selection rules given in §3.2 . This bandedness is shown in Figures 1–7
for the various radial discretization methods. Figures 2 and 3 show how the sparsity pattern
varies with different orderings of the eigenvector, namely jnm ordering where m varies fastest,
and jmn ordering where n varies fastest. These two orderings are near optimal in respect to
minimizing the bandwidth of A.

0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

120

140

160

180

200

nnz=4058  density=9.0%

Figure 1: Banded matrix from the O(h2) finite difference scheme with jnm-ordering.

To validate results, (39) was solved by various independent methods: (a) inverse iteration ([21]
without pivoting, which preserves the bandwidth and allows higher truncation levels, (b) inverse
iteration with partial pivoting at various thresholds, and (c) the implicitly restarted Arnoldi
Method (from ARPACK) with reverse communication. Both MATLAB and in-house Fortran
programs were used.

Plotting maxλ<{λ} against R allows us to infer whether <{λ} > 0 for any of the models of v
in §5.

4 Planar flows in toroidal poloidal form

For the planar flow (1), the streamlines are the level surfaces of the stream function f , lying in
planes parallel to the xy-plane. To apply the numerical methods of §3 we need to express v in
the poloidal-toroidal forms (15), (16). Expanding f =

∑
fmn Y

m
n , and dotting (1) with r gives

L2smn Y
m
n = n(n+ 1)smn Y

m
n = fmn

∂Y m
n

∂φ
,

10
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nz = 4078

Figure 2: Banded matrix from the O(h2) finite difference scheme with jnm-ordering and a
higher accuracy difference approximation at the boundary.
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Figure 3: Banded matrix from the O(h2) finite difference scheme with jmn-ordering.
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Figure 4: Banded matrix from the O(h4) finite difference scheme with jmn-ordering.
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Figure 5: Banded matrix from the O(h4) finite difference scheme with jnm-ordering.
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Figure 6: Banded matrix from the Chebychev spectral scheme with jnm-ordering.
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Figure 7: The RHS matrix from equation (39).
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where L2Y m
n = − 1

sin θ

[
∂
∂θ

(
sin θ ∂

∂θ

)
+ ∂2

∂φ2

]
Y m
n = n(n+ 1)Y m

n . Thus

smn =
im

n(n+ 1)
fmn . (40)

To obtain the toroidal coefficient tmn of the flow, we use the curl of (1):

L2t = r · ∇ × v = r · ∇ × (∇f × ez)

= −2 cos θ∂f
∂r
+
cos θ

r
L2f +

sin θ

r

∂

∂θ

(
f − r∂f

∂r

)
. (41)

With superscript m suppressed, and αn :=
√ [
(n2 −m2)/(4n2 − 1)

]
, the spherical harmonics

defined by (17) satisfy recurrence relations [2]:

cos θ Yn = αn+1Yn+1 + αnYn−1 ,

sin θ
∂Yn
∂θ

= nαn+1Yn+1 − (n+ 1)αnYn−1 .

Using these, and letting dn ≡ d/dr + n/r, the spectral form of (41) is found to be

n(n+ 1)tn = −(n+ 1)αnd1−nfn−1 + nαn+1dn+2fn+1 . (42)

If f consists of only a single degree n, i.e.

f = fmn Y
m
n + f−mn Y −mn = 2<{fmn Y m

n } , (43)

then, from (42),

tn−1 =
αn
n
dn+1fn , tn+1 = −

αn+1
n+ 1

d−nfn . (44)

More generally, for each fmn in the expansion f =
∑
fmn Y

m
n , there will be one poloidal flow

coefficient smn given by (40), and two toroidal flow coefficients t
m
n±1 given by (44). So, for a flow

derived from a prescribed f , it is straightforward to find the corresponding poloidal and toroidal
coefficients. This approach will be the basis of our numerical investigation in §5.1.

It is of interest to consider the inverse problem. That is, is it possible to convert a given flow v

to a planar flow, by addition of components defined via (40), (44)? We will use the terminology
‘planarizing’ for such a construction. Clearly, if m 6= 0, then for given smn , one can find fn from
(40), and construct tn±1 from (44). The combination smn + tn−1 + tn+1 is then planar, and
smn has been planarized. However, to planarize a given t

m
n component, there are 2 paths one

might follow. One has to find either (a) an fn+1 from (44a), or (b) an fn−1 from (44b). In
(a) one generates a planarizing sn+1 from (40) and tn+2 from (44b). In (b) one generates the
planarizing sn−1 from (40) and tn−2 from (44a). For given tn, the f -solutions of (44) satisfying
the differentiability condition (33) are

(a) fn+1 =
n+ 1

αn+1
r−n−2

∫ r

0
rn+2 tn dr , (b) fn−1 = −

n

αn
rn−1

∫ r

0
r−n+1 tn dr .

Thus, to satisfy the fixed boundary condition at r = 1, tn must satisfy at least one of

(a)

∫ 1

0
rn+2 tn dr = 0 , (b)

∫ 1

0
r−n+1 tn dr = 0 . (45)

If tn satisfies (45a) then the corresponding planar flow is tn + tn+2 + sn+1. If tn satisfies (45b)
then the corresponding planar flow is tn + tn−2 + sn−1. If tn satisfies neither of (45), then tmn
cannot be planarized by this method.

Later, in §5.2, we illustrate these points by considering the possibility of planarizing some classic
flows where v is defined by a set of smn , t

m
n coefficients.
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5 Results for various planar flows

In this section, we solve the kinematic dynamo problem comprising (20), (21), (31), (32), for
various planar flows. First, we consider flows with a single harmonic degree, then some flows of
historical interest.

5.1 Flows of One Harmonic Degree

With p = 1, 2, 3, . . ., consider the stream function

fmn = rn(1− r2)p . (46)

The associated planar flow is

v = 2<{smn + tmn+1 + tmn−1} , (47)

where smn , t
m
n are given by (40), (44). This flow satisfies the differentiability condition (33), the

fixed boundary condition (34), the no-slip condition (35) if p > 1, and supports D-Q decoupling
as in (36) if n is even.

Computer limitations restricted our investigation to relatively low values of n,m, p. Whilst some
of the λmax were found to be complex, representing an oscillatory magnetic field mode, in general
this report omits the imaginary parts of λmax since we are primarily interested in whether the
field grows or not.

5.1.1 Cases n = 2, 4; m = 0

If m = 0, then smn = 0 by (40). Figure 9 on the following page shows the streamlines, which
are just circles in planes of constant z. Such purely toroidal flow is ruled out by the Toroidal
Velocity Theorem of §1, with a theoretical decay rate upper bound λ ≤ −π2 . These flows were
used only as one of the computational checks. Here there is full decoupling with respect to the
order m2 = m3 of the magnetic field, and one can independently investigate chains

Sm3

1 , Tm3

2 , Sm3

3 , Tm3

4 , . . .

for various m3. The λ-profile for m3 = 1, shown in Figure 8, is typical for m3 6= 0. The figure
shows agreement with the −π2 bound on <{λ}, that the bound is only attained at Rm = 0, and
that this particular mode is highly oscillatory for larger Rm. For m1 = m2 = m3 = 0, the only
non zero interaction amongst (22)–(28) is (tn1

Sn2
Tn3
) . So then the poloidal magnetic modes S0n

decay independently at the free decay rate for each Sn. In particular, S
0
1 decays at the slowest

decay rate −π2, and any magnetic field chain containing this mode will decay at that same rate,
regardless of the choices for N, p,R. In this case our computations showed that π2 ≈ 9.87 was
attained even for truncations as low as J = 20 — see Table 2 for results using the chain DM01

which contains all permissible m3.
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Figure 8: <{λmax} (—) and ={λmax} (- - -) for n = 2, m = 0, p = 1, m3 = 1, N = 25, J = 400.
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Figure 9: Streamlines for n = 2, m = 0, p = 1, 2, 3 at z = 0, 0.4, 0.8. Streamlines for n = 4 are
similar.
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N J=3 10 20 3 10 20 3 10 20

p = 1 p = 2 p = 3
1 −10.0 −9.88 −9.87 −10.0 −9.88 −9.87 −10.0 −9.88 −9.87
10 −10.0 −9.88 −9.87 −10.0 −9.88 −9.87 −10.0 −9.88 −9.87

Table 2: <{λmax} for n = 2, 4; m = 0; p = 1, 2, 3; any R; DM01.
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Figure 10: Streamlines for n = 2,m = 1, p = 1, 2, 3 at z = 0, 0.4, 0.8.
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5.1.2 Case n = 2, m = 1

Figure 10 on the preceding page shows the streamlines for p = 1, 2, 3. There is no flow at z = 0
because Pm

n (0) = 0 when n−m is odd. The flow is divided into two dipolar cells. There is no
m-decoupling, so we considered the dipole chain
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4 , T

3
4 , T

4
4 , . . .

Our results in Table 3 and Figure 11 show that the magnetic field decays faster than the free
decay rate −π2. So these flows cannot maintain a magnetic field.

N J=100 200 250 100 200 250 100 200 250

p = 1 p = 2 p = 3
9 –26.2 –26.2 –26.2 –18.4 –18.4 –18.4 –17.6 –17.6 –17.6
10 –29.0 –28.8 –28.8 –18.0 –18.0 –18.0 –17.3 –17.3 –17.3
11 –25.0 –25.0 –25.0 –18.3 –18.3 –18.3 –17.4 –17.4 –17.4
12 –24.7 –24.7 –24.7 –18.0 –18.0 –17.9 –17.4 –17.4 –17.4
13 –24.5 –24.7 –24.7 –18.6 –18.6 –18.6 –16.6 –16.8 –16.7
14 –24.9 –24.9 –25.0 –18.4 –18.5 –18.4 –16.4 –16.5 –16.5

Table 3: <{λmax} for n = 2, m = 1, p = 1, 2, 3; R = 200, DM01.
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Figure 11: <{λmax} for n = 2, m = 1, p = 1, 2, 3; DM01, N = 13, J = 250.

5.1.3 Case n = 2, m = 2

Figure 12 on the next page shows the streamlines for n = 2, m = 2 and p = 1, 2, 3. The number
of cells increases with m, and there is noticeably more shear near the boundary with p = 1 than
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for p = 2, 3. For this flow we first considered the dipole chain
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and the results are shown in Table 4 on the following page. The flow with p = 1 stands out
in several respects. Compared to the cases p = 2, 3 it is much harder to get convergent results
for p = 1, the growth rates estimates only starting to settle down above the truncation levels
N ' 20 and J ' 200 . Whilst the level of convergence cannot be regarded as convincing, some
<{λmax} in Table 4 are positive for quite high truncation levels. Thus the p = 1 case shows
prima facie evidence that it might support magnetic field maintenance. The growth curves at
different truncation levels as a function of Rm are shown in Figure 13 on the next page.
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Figure 12: Streamlines for n = 2, m = 2, p = 1, 2, 3, at z = 0, 0.4, 0.8.

For this flow we also considered the quadrupole chain
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and found a similar growing trend, as shown in Figure 14 on page 21.

5.1.4 Case n = 4, m = 1

Figure 15 on page 21 shows streamlines for n = 4, m = 1, and p = 1, 2, 3. At z = 0, there is no
flow as n−m is odd. For these flows there is no m-decoupling, so we considered the full dipole
chain
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All of the growth rates in Table 5 and Figure 16 on page 22 are negative, indicating that the
magnetic field decays .
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N J=100 200 250 400 100 200 100 200

p = 1 p = 2 p = 3
11 2.01 0.192 –0.028 –0.267 –4.56 –4.77 –12.8 –12.9
12 2.53 –6.11 –7.37 –8.82 –16.7 –16.9 –25.4 –24.8
13 –4.52 –8.94 –9.49 –10.1 –11.2 –11.3 –16.0 –16.1
14 –3.39 –5.99 –6.26 –6.54 –21.8 –22.1 –18.2 –18.3
15 –15.4 –14.6 –14.6 –14.6 –13.1 –13.4 –17.3 –17.4
16 12.3 7.41 6.78 6.08 –14.7 –15.1 –17.4 –17.5
17 2.64 –0.784 –1.22 –1.70 –13.5 –13.9 –17.3 –17.4
18 5.76 0.514 –0.161 –0.907 –14.3 –14.7 –17.3 –17.4
19 –0.817 –6.37 –7.05 –7.78 –14.2 –14.5 –17.4 –17.4
20 7.06 2.40 1.81 1.17 –13.9 –14.3 –17.3 –17.4
21 6.63 1.37 0.702 –0.035 –13.9 –14.3 –17.3 –17.4
22 5.48 0.595 –0.014 –0.681 –14.0 –14.3 –17.3 –17.4
23 4.18 –0.644 –1.25 –1.90 –14.0 –14.4 –17.3 –17.4
24 5.48 0.676 0.745 –0.584 –13.9 –14.3 –17.3 –17.4
25 5.86 0.928 0.308 –0.370 –13.9 –14.3 –17.3 –17.4

Table 4: <{λmax} for n = 2, m = 2, p = 1, 2, 3; R = 200, DM12.
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Figure 13: <{λmax} for n = 2, m = 2, p = 1; DM12; N = 20, 25; J = 200, 400.
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Figure 14: <{λmax} for n = 2, m = 2, p = 1; QM12; N = 20, 25; J = 200, 400.
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Figure 15: Streamlines for n = 4,m = 1 and p = 1, 2, 3 at z = 0, 0.4, 0.8.
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N J=100 200 250 100 200 250 100 200 250

p = 1 p = 2 p = 3
9 −19.9 −19.9 −19.9 −15.5 −15.5 −15.5
10 −19.7 −19.7 −19.7 −15.4 −15.4 −15.4
11 −30.5 −30.7 −30.8 −19.8 −19.9 −19.9 −15.4 −15.4 −15.4
12 −30.5 −30.6 −30.7 −19.8 −19.8 −19.8 −15.4 −15.4 −15.4
13 −31.5 −31.7 −31.8 −19.7 −19.8 −19.8 −15.4 −15.4 −15.4
14 −31.9 −32.2 −32.2 −20.0 −20.0 −20.0 −15.4 −15.4 −15.4
15 −32.8 −33.0 −33.1

Table 5: <{λmax} for n = 4, m = 1, p = 1, 2, 3; R = 200, DM01.
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Figure 16: <{λmax} for n = 4, m = 1, p = 1, 2, 3; N = 12, J = 250,, M01.
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5.1.5 Case n = 4, m = 2

Figure 17 shows streamlines for n = 4, m = 2 and p = 2, 3. We used the dipole chains
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Results are shown only for p = 2, 3 . Convergence was not obtained for p = 1 at the same N, J
levels, and higher truncations await investigation. Table 6 and Figure 18 on the next page again
support the Planar Velocity Theorem. Table 6 again shows it is easier to get convergent results
when there is lower shear near the boundary, i.e. higher p.
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Figure 17: Streamlines n = 4,m = 2 and p = 2, 3, at z = 0, 0.4, 0.8.

N J=100 200 250 100 200 250

p = 2 (DM12) p = 3 (DM02)
9 –16.7 –16.7 –16.7 –17.0 –17.0 –17.0
10 –21.3 –25.5 –25.5 –18.0 –18.0 –18.0
11 –21.4 –21.5 –21.5 –18.0 –18.0 –18.0
12 –19.5 –19.5 –19.5 –17.8 –17.8 –17.8
13 –21.1 –21.1 –21.1 –18.0 –18.0 –18.0
14 –23.3 –23.4 –23.4 –18.0 –18.0 –18.0

Table 6: <{λmax} for n = 4, m = 2, p = 2 (DM12), p = 3 (DM02), R = 200.
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Figure 18: <{λmax} for n = 4, m = 2, p = 2 (DM12), p = 3 (DM02), N = 13, J = 250.

5.1.6 Case n = 4, m = 3

Figure 19 on the next page shows streamlines for n = 4, m = 3 and p = 2, 3. At z = 0, there is
no flow as n−m is odd. We used the dipole chain

DM13 : S11 , T
1
2 , S

1
3 , S

3
3 , T

1
4 , T

3
4 , S

1
5 , S

3
5 , S

5
5 , . . .

No convergent results were obtained for p = 1. Table 7 and Figure 20 on the next page again
show that all growth rates are negative.

N J=100 200 250 100 200 250

p = 2 p = 3
9 –12.6 –12.7 –12.7 –16.3 –16.3 –16.3
10 –23.4 –23.4 –23.4 –17.0 –17.0 –17.0
11 –19.8 –20.0 –20.0 –17.5 –17.5 –17.5
12 –21.8 –21.8 –21.9 –17.9 –17.9 –17.9
13 –19.5 –19.6 –19.6 –17.1 –17.1 –17.1
14 –19.3 –19.4 –19.4 –17.4 –17.4 –17.4

Table 7: <{λmax} for n = 4, m = 3, p = 2, 3; R = 200, DM13.

5.1.7 Case n = 4, m = 4

Figure 21 on page 26 shows streamlines for n = 4, m = 4, and p = 1, 2, 3. We used the chain

DM14 : S11 , T
1
2 , S

1
3 , S

3
3 , T

1
4 , T

3
4 , S

1
5 , S

3
5 , S

5
5 , . . .
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Figure 19: Streamlines for n = 4,m = 3 and p = 2, 3 at z = 0, 0.4, 0.8.
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Figure 20: <{λmax} for n = 4, m = 3, p = 2, 3; DM13, N = 13, J = 250.
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These flows have high shear away from the z-axis, and convergence has not been achieved for
p = 1. The only inference to be made from Table 8 is that all the growth rates are negative.
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Figure 21: Streamlines for n = 4, m = 4, p = 1, 2, 3 at z = 0, 0.4, 0.8.

N J=100 200 250 100 200 250 100 200 250

p = 1 p = 2 p = 3
11 44.1 35.1 34.3 −15.7 −16.0 −15.9 −15.0 −15.0 −15.0
12 −16.9 10.9 10.1 −18.0 −18.1 −18.1 −15.4 −15.4 −15.4
13 −11.5 −17.3 −18.0 −20.0 −20.1 −20.1 −15.7 −15.7 −15.7
14 −9.34 −23.0 −23.8 −19.4 −19.5 −19.5 −15.9 −15.9 −15.9

Table 8: <{λmax} for n = 4, m = 4, p = 1, 2, 3; R = 200, DM14.

5.2 Planarizing some classic flows

In this section we consider planarizing three classic flow models using the method of §4. In
two of the three cases it is not possible to planarize, for two different reasons. In one case, part
planarization is possible, but destroys the pre-existing field growth.

5.2.1 Bullard-Gellman flow

In the present formalism the classic Bullard-Gellman flow ([1] is given by

v = εt01 + s
2
2 + s

−2
2 , (48)
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where

t01 =
1√
3 r(1− r) , s22 = s−22 =

√
6
5 r

2(1− r)2 .
A planarized version of the BG flow is

v = εt01 + 2<
{
s22 + t

2
3

}
. (49)

From (40) and (44b),

t23 = − 1
4
√
7

(
df2
dr
− 3
r
f2

)

where f2 = i s22/3 = i
√
(2/5) r2(1 − r)2. Since the BG flow does not function as a dynamo, we

have not pursued its planarized version numerically, but merely give it above as an example of
a flow that is easily planarized.

5.2.2 Kumar-Roberts flow

The Kumar-Roberts flow (50) was one of the first shown to function as a dynamo [15]. It evolved
from the Bullard-Gellman flow (48) by the addition of the large scale meridional circulation s02.
It is a convenient flow to consider because of its fast numerical convergence. Here

v = t01 + ε1s
0
2 + ε2s

2
2 + ε3s

−2
2 , (50)

where

t01 =
r(1− r2)√

3
, s02 =

r5(1− r2)3√
5

, s22 = s−22 =
r3(1− r2)2e−ipri√

10
.

This motion satisfies the fixed boundary condition (34) and no-slip conditions (35), but not the
differentiability condition (33). We used ε1 = 0.03, ε2 = ε3 = 0.04, p = 3π, values known to
produce dynamo action [15]. This flow cannot be fully planarized using (40), since m = 0 for
the meridional circulation s02. Removing s

0
2 would just revert to a Bullard-Gellman type flow

(48), and not auger well for a growing field. We thus left s02 unchanged, and investigated the
effect of just planarizing the s22 component. This was done by the addition of a t

2
3 component

as in §5.2.1. The end result is a meridional flow s02 superimposed on a planar flow s2
2
+ t01 + t

2
3.

From (40) and s22 in (50), we find

f2 =
3r3(1− r2)2e−ipr√

10
. (51)

Equation (44) then gives the corresponding t23 that planarizes s
2
2, noting t

2
1 ≡ 0 . As shown by

our numerical results in Figure 22 on the following page this part planarization greatly flattens
the growth curve, and removes the possibility of dynamo action. Although not shown on the
graph, this rapid decay persisted even though we increased the magnetic Reynolds number out
to 5000.
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Figure 22: <{λmax} for (a) the Kumar-Roberts flow, and (b) the partly planarized Kumar-
Roberts flow, using N = 12, J = 250.

5.3 Pekeris, Accad, and Shkoller flow

Lastly we consider the possibility of planarizing the Pekeris, Accad, and Shkoller (PAS) flow,
another early successful kinematic dynamo [20]. We give this as an example that it is not
always possible to planarize a flow even when it has no axisymmetric meridional component.
The motion of PAS is

v = 2<{s22 + t22}, (52)

where

s22 = kΛj2(Λr) , t22 = kΛs22(r) .

Here k =
√
6/5, and Λ is a positive root of the spherical Bessel function

j2(x) =

(
3

x3
− 1
x

)
sinx− 3

x2
cosx .

From (40), s22 in (52) is planarized by using

f22 = −3ikΛj2(Λr) ,

and then obtaining t23 from (44b). However, for t
2
2 in (52), since f

2
1 ≡ 0, a planarizing f23 must

be found from (44a), by solving

t22 =
1

3
α3
df23
dr
+
4

3r
f23 . (53)

Since t22 does not satisfy (45a), it is not possible to find f
2
3 satisfying both the differentiability

condition (33) and the fixed boundary condition (34).
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6 Conclusions

In §2 the Planar Velocity Theorem was reviewed , and in §2.2 it was argued that the proof fails
due to diffusive coupling of the horizontal and vertical fields Bh and Bz. In §4 the relations
between the stream function for a planar flow and the spherical harmonic poloidal and toroidal
spectral components were derived. The spectral equations given in §3.1 form the basis for a
numerical investigation of possible field maintenance by planar flows. In §5 we have reported on
the numerical growth rates determined for a number of single degree planar flows v = ∇×(fez) =
2<{smn + tmn+1 + tmn−1} using stream functions f = rn(1 − r2)p Y m

n . All of our results, where
convergence was obtained, indicate field decay, except for the case n = m = 2, p = 1 . As
shown by Figures 13 and 14 on page 20, the λ-curves for this flow behave remarkably differently
from all others, the latter typified by the decay results in Figure 11 on page 18. Figures 13
and 14 are prima facie evidence that planar flows can maintain magnetic fields. However, a
more definite conclusion can not be made since convergence has not yet been attained to a
level that removes all doubt. Such convergence requires either larger computing resources, or
an alternative numerical approach.

At the outset of this project, and given formula (12), it was expected that lower p and hence
higher velocity shear near the boundary, would be more effective in acting as a self sustaining
dynamo. Superficially, this has proven true in that the most probably successful candidate is the
stream function f = r2(1− r2)p Y 22 with p = 1. However, in other cases flows with higher p have
produced slower decay rates, making it not possible to make a conclusion about effectiveness
based simply on p. For example, see Figure 11 on page 18 where the p = 1 flow produces the
most rapidly decaying magnetic field.

For the Earth, rotation is a very significant factor. Fully dynamical geodynamo models [6] show
concentrations of planar flow, indeed zonal flow, about the inner core boundary and extending
into the tangent cylinder above and below the inner core. Thus the study of the efficacy of
planar flows is of considerable interest. The resolution of the convergence difficulties referred to
above, and the establishment of the validity or otherwise of the Planar Velocity Theorem remain
the subject of ongoing work.
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