Justin Koonin (University of Sydney)
Topology of eigenspace posets for unitary reflection groups
The eigenspace theory of unitary reflection groups, initiated by Springer and Lehrer, suggests that the following object is worthy of study: the poset of eigenspaces of elements of a unitary reflection group, for a fixed eigenvalue, ordered by the reverse of inclusion. We investigate topological properties of this poset. The new results extend the well-known work of Orlik and Solomon on the lattice of intersections of hyperplanes.
---------------------------------------------------------------------------------------
After the seminar we will take the speaker to lunch.
See the Algebra Seminar web page for information about other seminars in the series.
John Enyang [email protected]