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Algebras of Intermediate Growth*

A. A. Kirillov, M. L. Kontsevich, and A. 1. Molev

We investigate finitely generated associative algebras and Lie algebras in which
the dimension of the nth term of the natural filtration grows faster than any
polynomial in » but more slowly than any exponential term ¢”. As examples, we
consider associative and Lie algebras generated by two general vector fields on
the real line.

Part I. Preliminary investigations

1.1. Let A be an infinite-dimensional algebra over a field K. We suppose that
A is finitely generated and denote by A4, the space of those elements that may be
written in the form of a polynomial (of degree at most ») of generators.
Henceforth, 4 will be either an associative algebra with a unit or a Lie algebra.
In the former case, we will set 4, = K, and in the latter case, 4, = {0}.

The essential feature of A is that the sequence g, = dim 4, is an increasing
sequence. The numbers g, grow polynomially for many important examples of
algebras, i.e., a, ~ cn? as n— 0.

The number

d= lim 2o
nsoo DA
is sometimes called the Gelfand - Kirillov dimension of the algebra 4 and denoted
by Dim A (cf. [9)). Simple verification shows that Dim 4 is independent of the
choice of the generators in A (unlike the coefficient C, which may vary).

* Originally published as Keldysh Inst. Prikl, Mat., USSR Academy of Sciences, preprint no. 39, 1983,
Transiated by Robert H. Silverman.
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Examples. 1. An algebra of regular functions on an algebraic affine variety X.
In this case, Dim 4 = dim X and ¢ = (1/d!) deg X (cf. [7].

2. The enveloping algebra U(®) of a finite-dimensional Lie algebra G. Here
Dim U(®) = dim &.

3. The subalgebra generated by principal vectors corresponding to simple
roots in the contragredient Lie algebra (cf. [5]). In this case, Dim A =0, 1, or w0.

In recent years, interest has grown in algebras A for which Dim A is infinite.
The exterior Lie algebra with & generators and its enveloping algebra (which is
isomorphic to an exterior associative algebra with &k generators or & tensor
algebra over a k-dimensional space) is an example of those algebras. In these
cases, the numbers @ grow exponentially (in the case of a Lie algebra,
a, ~n~'k"; in the case of an associative algebra, a, ~ k).

Algebras for which the numbers a, grow more slowly than any exponential
function ¢", ¢ > 1, are of particular interest. We will call them algebras of
intermediate growth. (The concept of an algebra of subexponential growth was
introduced in a somewhat different setting; of. {1].) The contragredient algebras
of infinite growth for which the asymptotic weight multiplicity has been re-
cently calculated [4] would appear to belong to this class (cf. Example 3
above).

1.2. Suppose that V = @ ., V¥ is a graded vector space over a field K. The
series

P,y =¥ (dim P*)* (N
k=0
is called the Poincaré series of the graded space V. This definition may be
generated naturally in two ways. First, we may consider ¥ to be a space with
increasing filtration:

{G}zVulcV(}ﬁV;C“-CVnc:---(_-V_

With such a space we may associate canonically the graded space
gr V= @F gV where gt V="¥V/V... By definition, we  set
P, (1) = P (1). Second, we may consider, semigraded spaces. With these spaces,
we may associate formal power series of # variables specified by Equation (13,
where k denotes the multi-index (ky,.... k) eZy, ! is the set of variables
{f,, ..., 1), and #* is the monomial /{1 ... =, '

We now present certain (well-known) facts about Poincaré series.

The relations

Pyov,= Py + Py, P ov,=Pv Py, (2
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are self-evident: from these, there immediately follow the equalities
Prk(y)ﬂplfu PT(V)=(1_PV)—1 (3
where T(1) = @E_, THV) is a tensor algebra over V.
The relations between P, and Pg, and between P, and P, is more

complicated. Here S(V) = @ ., S*(V) is a symmetric algebra over V, and
A= @, AX(¥) is an exterior algebra over V. That is, if

Pu(0) =Y, ali)r*, In Py =3 b)Y, In Pyyy=" ek,
then
bk) = d%d“la(k/d), (k) m;z;(— D= 'd alk/d), (4

where the summation extends over all natural divisors d of the multi-index k. To
prove Equation (4), note that by virtue of the relations

SV® V) =SFHIRS(V), AV @V =A(V)BAT)
the coefficients b(k) and ¢(k) depend linearly on the sequence {a(k)}; therefore it
is sufficient to check (4) in the case of a one-dimensional space V.

Equations (4) may be inverted and the coefficients a(k) expressed in terms of

b(ky or c(k). In the case of a symmetric algebra, the explicit formula has the
form

k) = 3 5D pikja), (5)
dik

1.3. The explicit form of the relation between the growth of the sequence a(n)
and the behavior of the sum of the series

£y =% amer

nz0
na fleighborhood of 1 =1 will also be useful to us. If a(x) grows polynomially
and if a(n) ~ cn, the function f() will be rational and will have a unique pole
of order d-+1 at the point ¢ = 1. At this point, the principal term of the

decomposition of f is equal to
¢ dt!
(1 _ t)‘“’ 1
The next case (in terms of the order of growth) was investigated by Ramanu-
jan [8]. Here, if the sequence a(n) grows as [*°, ie.,

In afn) —4 )

lim

o H
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where 0 <« <1, then at the point 7 =1, f has an asymptote of the form
TE/(1 — H*. More precisely,

lim ln f(1)(1 — ) = B, : )

where f=af(1 — o) and B = (1 + a)a®1 ~B4 1 -3,

In particular, if In a(rn) ~ 4./n, then In f(£) ~ 14%/( 0.

It would be of interest to obtain more exact and more exhaustive information
about the correspondence between the growth of a(n) as n — o and the growth
of f(ry as t -+ 1.

That a{n) exhibits intermediate growth is equivalent to the assertion that F{63)
possesses a circle of covergence of radius 1 and an essential singularity at the
point 1. The following assertion is a consequence of this fact.

Theorem 1. A Lie algebra © of infinite growth has intermediate growth if and
only if its enveloping algebra U{®) possesses this property.

In fact, a natural filtration such that
gr U(6) = 5(6)

may be defined in U(®). In the case of infinite growth, the sequences {a(n)} and
{b(n)} connected by Equations (4) and (5) satisfy, as may be easily verified, the
bounds:

a(n) = b(n) < const - a(n).

Therefore, the series Py (f) and In Py, (2) (that is, Po(f) as well) have the same
radius of convergence.

1.4. One tool for the investigation of infinite-dimensional algebras is consider-
ation of the corresponding quotient rings. Let us suppose that an algebra A
possesses a filtration {4, } such that the corresponding graded algebra gr 4 does
not contain any divisors of 0 and has intermediate growth. It turns out that in
this case 4 is an Ore algebra (cf. [3)), i.e., any two nonzero elements x and y in
4 have a nonzero common right (and left) multiple.

In fact, let us consider the right ideals x4 and y4 in 4. If x and y do not have
a common right multiple, these two spaces will intersect only at 0. Therefore, if
xed,and ye A4, then x4, 4+ y4,_ , < 4, and

aln) z aln — k) + a(n — 1),
where a(n) = dim A4,. Hence, the lower bound

CI(?I) = c - 2n;'max{k, )]
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is easily found, where ¢ > 0. This bound contradicts the claim that 4 is an
algebra with intermediate growth (and consequently lm In a(n)/ln n = 0).

Thus, algebras of intermediate growth without zero divisors possess a quo-
tient ring. From Section 1.3, it follows that a Lie algebra of intermediate growth
is embedded in a Lie quotient ring (the quotient ring of the enveloping algebra).
The study of such quotient rings promises to be of great interest.

Part I, Lie algebra generated by two general vector fields on
the real line

2.1. Suppose that Vect R’ denotes a Lie algebra of smooth vector fields on the
real line. We let L(x, y) denote the exterior Lie algebra with generators x and y.
Every pair of fields £, # € Vect R' specifies a homomorphism ¢, , of L(x, y} into
Vect R' such that ¢, (x) + &, and ¢.,(3) =1n. Let I(, #) be the kernel of this
homomorphism. We set I =n,, (&, #). We will say that the fields &, and #, are
in general position if I{&,, ny) = I. 1t may be verified that the fields & = d/df and
n = u(t) - d/dt are in general position if the functions wu(f), u’(f), u"(f), . .. are
algebraically independent.

Lemma 1. The ideal I coincides with the intersection of those ideals K&, n) such
that & = d/dt and

N
n= Y celtdldr
k=1

In fact, any nonzero field £ may be locally reduced to the form d/dt by an
appropriate selection of coordinates. The field # may be approximated locally in
the C*-topology by fields of this form. The lemma is proved.

Our goal in the second part of the article is to investigate the algebra
A= Lix, p/l.

The algebra L(x,y) is bigraded (by degrees relative to x and j):
Lix, yy = @, L{x, y)*. Tt is clear that I is a homogeneous ideal relative to this
bigrading and, consequently,

[=@ I e @ A,
kit

k.l

2.2. Let us fix an integer / = 0. The space L*'= @, L(x, )™ is generated by
monomials of the form

Xy = (ad x)%ad y(ad x)-1 - - - ad y(ad x)*, (®
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where (k) denotes the set k;, .. ., k; of nonnegative integers. We will denote the
sum k, +k, + -+ + k& by [(B)}.

TLemma 2. The linear combination ¥ g - x Coy X belongs to I*' if and only if it
vanishes for any substitution of the form

H
x —djdt, ¥+ ¥ @ et dide,
f=1
where a; and }; may be thought of as independent parameters.

Proof. The expression is 2 homogeneous polynomial function of degree /in y.
For this function to vanish identically, it is sufficient for it to be equal to 0 on
any /-dimensional subspace. Now we need only resort to Lemma 1. Lemma 2 is
proved.

By means of the standard transformation of a polynomial function of degree
I to a symmetric /-linear form (polarization), it may be proved that the premise
of Lermma 2 is equivalent to the assertion that the coefficient of 4,4, - - - 4, in the
expression obtained after the substitution described above, vanishes. This co-
efficient may be calculated explicitly and has the form

Y 2w Pilod) - gulod) CXp(t Y &-) didr,

aes(l) (k) Fe

where

O’Z = (}"o'(l): R }’a(!)):
Py = — A + A~ Ay) -+ A — A, (%
Gool D = AP (A + ALY (L + - + Ay (10)

Let Sym denote the matural projector in the space C[4,,..., 4] onto a
subspace of symmetric polynomials:

1
Symp(d) =5 3, plod).
i * g S
Now we define the mapping of the space L' into Sym C[4,, . .., 4,] by setting
?‘(X{k)) = Sym p,q(k). (11}

The preceding line of reasoning may be summarized as follows.
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Theorem 2. The kernel of the mapping » coincides with the space
[re]
=@ I
k=0

Thus, the mapping » specifies an isomorphism of the space W' = DF_, W
onto some subspace of Sym C[4,, ..., 4}

We denote this space by K,. It is graded in a natural way by degree relative
to the set of variables 4,. Obviously, the resulting isomorphism between W* and
K, is a homogeneous mapping of degree deg P =/ — 1.

2.3. Let us now study the structure of the space K,. We denote by J, the ideal
in C[4,, ..., 4] generated by the /! polynomials
P /(B =piloh), oeS({).

Theorem 3.  The following equality is satisfied:
K, = Symp J,. (12
Proof. By definition, K, is the linear hull of polynomials of the form Sym p,g(k)

and, consequently, is embedded in Sym J, To prove the converse embedding,
note that every element Sym J, has the form

Sym Y p,,U, =3 Symp, U, =% Sympo~'U, eSymp,ClA, ..., 4]

It remains for us to prove that the linear hull of the polynomials g, coincides
with C[4,, ..., 4;]. This is immediately evident if we introduce the change of
variables g, = A,, iy =4, + Ao, .. .,y = 4, - -+ 4,, since

GuoA) = ufr - - - pf
Corollary. Suppose that q4,, 4., ..., 4} is a basis in C[4,, ..., 4] as a module

over Sym C[4,, ..., 4] (see [2)). The space K, is an ideal in Sym C[A,... 4]
generated by the elements of Sympg, l sisi.

24. We let R; denote the radical of the ideal J,. From general theorem of
algebraic geometry {see [7]), it follows that R, is a homogeneous ideal, i.e.,
R, = @> , R%, and that for large enough k, we have Rf = J¥

Our hypothesis is that

Ry =J, (13)
rs
i.e., that J, is a radical ideal.
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Let us investigate the ideal R,. Suppose that X, < p/(C) is the common zero set
of the ideals R, and J,. This set may be described explicitly. That is, we denote
by E, the set of those points belonging to 2’ which possess the following
properties.

{a) All coordinates take values from the set

{1,0, -1, =2, —=3,.. },

(b) the sum of the coordinates is less than 2.
The points E; will be called admissible I-sets. Every such set (4,,...,4,)

will also call admissible.

Theorem 4. The set X, with | = 2 consists of all the admissible poinis; moreover,
all these points have multiplicity 1.

Proof. First note certain extremely simple properties of admissible sets.

1. Every admissible set contains at least two units.

2. If two admissible sets are proportional, they are equal.

3. The number of admissible sets is equal to the number of monomials of
degree at most ({ —2) in [ variables, ie.,

21 -2
(i=2)

4, As regards the action of the group S(/) of permutations of coordinates, the
set E, may be decomposed into orbits, of which there are Y 1=3 p( 7}, where p(n)
is the number of partitions of » into a sum of unordered nonnegative integral
terms,

The first two properties are self-evident. The last two follow from the
one-to-one correspondence between E, and the set of monomials of degree at

most / — 2 in ] variables; i.e., with the set (&,,...,#,) we may associate the
monomial

P

Let us now prove the theorem. We first analyze the case / = 2. The ideal J, is
generated by the single generator 4, — 4, = p,(4). The set E, consists of the single
point (1, 1). In this case, the assertion of the theorem is true and, moreover,
Jo=R,.

Suppose that />>2 and that & ={(&,,..., £} is an admissible set, We must
verify that p, (&) = 0 for all ¢ € S(f) and that the differentials dp, (&) generate
the orthogonal complement of the vector &.
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& =&y -+ »Eou-.1y) 18 an admissible (J — 1)-set, then, by the inductive
hypothesis p, (&) =0, since the first (/ — 2) factors in p,, (cf. Equation (9))
when multiplied together yield p,_. ;_,. But if this set is not admissible, the only
way this can be so is if condition (b} is not satisfied. However, this is possible
only if €,4,=1and }!_, &, =2. In this case the last factor in the product (9)
vanishes. That is, p, (&) =0.

Now suppose that the vector y = (y,, .. ., y,) is orthogonal to all dp,_ (). Let
us prove that it is proportional to &£ We first assume that &=
(Ewrys -+ -2 g1y} I8 an admissible (/ ~ 1)-set for all o € S(). Then

Ap, (&) =dp, ;16 Espy + 7+ Eo vy ™ Eoiry),

while the last factor does not vanish, since &g+ + &y, 22 and
&,y < 1. By the inductive hypothesis, the vector y” is proportional to &', Thus,
the vectors y and & become proportional when any coordinate is discarded. If
{ > 2, this is possible only if they are themselves proportional. In essence, this
line of reasoning proves the assertion required in the case in which the vector &
has at least two coordinates not equal to 1. (Discarding them in this case results
in admissible sets £°.) It remains for us to analyze the case in which all the
coordinates of & other than one coordinate are units, and the sum of the

coordinates is equal to 2. Suppose that &, = 1. Then the set & is not
admissible. In this case,

dp, (&) =po i ((E WAy 4+ -+ dhog . 1y — dhoy)s

where the first cofactor is nonzero, as we will prove below. That is, the vector
7 possesses the property that 7,y = Y 42} 7,4 Hence, it follows that y and & are
proportional. It remains for us to verify that x, contains only admissible points.
Suppose that & € x,. Representing p,, in the form of the product of p,. ,_, and
{(Boy T+ &y — Eqp), 1t is clear that either £ is proportional to an
admissible set or the equality &, = Y17 &, is satisfied. If / > 2, the latter
equality cannot hold true for all ¢ ¢ 8(J) if & ¢ 0. Therefore, by replacing & by
a proportional vector we may assume that €' e E,_ |. Let us consider the set &'
that is obtained by replacing one of the unit coordinates in £ by the coordinate
Eoay. If the first case of the above alternative is satisfied, then &' will be
proportional to an admissible set and will differ from £’ in only a single
coordinate. Hence, it follows that &' is an admissible set, and therefore is
admissible in &, In the second case, the equality

{1
1 =k§:l oy — 1+ &4

holds, whence & is likewise admissible. The theorem is proved.
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2.5. Let us introduce the bilinear form {,> in the space 4,=Cl{4,,... 4]
setting

<P,Q>:P(6zs---ar)QIA,mr--zz,uo- (14)

Clearly, the subspaces 45 of homogeneous polynomials of degree k are pairwise
orthogonal relative to the form (14). The monomials l"/ﬁ! form an ortho-
normalized basis in 4%, where the multi-index % runs through all nonnegative
integer-vaiued vectors such that §k[ =k, and k! denotes k1 k,! - - - k,!. This form
may also be specified by the equality

(P.Qy= j. PQ exp(—|A[}/2) d'A. (15)
r!
An important property of this form is described by the following simple
assertion.

Lemma 3. The operator for multiplication by A, and the operator for differentia-
tion with respect to A; are adjoint.

Theorem 8. (a) The space J; orthogonal to J, consists of all polynomial solutions
g of the system of eguations

) pAB:i...-B)g=0, o€ 50
(b) the space R} orthogonal to R, is generated by the monomials
goilh) = (4, &, k=0,1,2,....6 €k, (16)

Proof. Since the spaces J; and R} are invariant under dilatations, it is
sufficient to verify the assertion of the theorem for homogeneous components of
A%, Assertion (a) follows at once from the definition of the ideal J, and
Equation (14). To verify assertion (b), note that the value of a homogeneous
polynomial ¢ of degree k at the point & may be written in the following form,
using Taylor’s formula:

1o e L

The hypothesis (13) is consequently equivalent to the following assertion:

Every polynomial solution of the system (C,) is a linear combination of the
monomials {16).

If 1 =2, this assertion assumes the following form:

Every polynomial solution of the equation (0x —dy)g="01is a polynomial in
{x + »). This is obviously true.
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If =23, it is necessary to investigate the solutions of the system

) {(Ebc — dY)Ndx + dy — 0z)g =10,
¥ W @x — ) (8x + 8z — By)g =0.

In this case, it may also be simply verified that all the solutions of degree & are
generated by the monomials

(x +y+ 25 (x + 95 (v + 25 (k + 25
Theorem 6. The family of monomials (16) is linearly independent if k =21 — 4.

An equivalent formulation is as follows:
If k 221 —4, any function on E, may be obtained by a restriction of a
homogeneous polynomial of degree k.

Proof. Since the function A, +:'++ 4, is everwhere nonzero on E, it is
sufficient to analyze the case k = 2/ — 4. We will construct explicitly a polyno-
mial of degree 2/ — 4 that is nonzero only at a single (moreover, arbitrarily
specified) point € of the set E,. Without loss of generality, it may be assumed
that the coordinates of £ are not increasing: §, 2 §, 2 - - - = £,. In particualar,
&, =&, = 1 (cf. Property 1, Section 2.4). Let us consider the following poly-
nomial of degree (/ — 2):

P&y =i+ b — YA+ A+ A — L)+ A — )

Lemma 4. The polynomial p is nonzero only at the points of the set E; such that
i] o Ag = 1

Preof. In the course of proving Theorem 4, we established that the last factor
of the polynomial p,, is equal to { only on those admissible sets that become
admissible when the coordinates 4, are discarded. That is, § is nonzero only on
those sets that remain admissible when 4, 4,_,, ... A; are discarded. The only
admissible 2-set is (1, 1). The lemma is proved.

To complete the proof of the theorem, it remains for us to construct a
polynomial § of degree (I — 2) that is equal to 0 at all points of E; of the form
(1,1, 8;,...,8,), other than the point &, and is not equal to § at this point. We
will find it in the form

i (= A= AN,
q(ﬁ-la‘--)}ﬁ')_r( Al sy ;{‘ )2-1 >

where r is a polynomial of degree at most /—2 in (/ —2) variables. The
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conditions imposed on r may be stated in the following way. Suppose that £, is
a collection of nonnegative integer-valued /-sets such that 3_ 1A <1 Then the
restriction of r to E, may be nonzero at only a single fixed point. That this
condition is satisfied follows from the next assertion.

Lemma 5. The restriction of the space of homogeneous polynomigls of degree |
in [ variables to the set E, is an isomorphism of linear spaces.

To prove the assertion, note that all the derivatives of a polynomial of degree
at most / may be calculated successively in terms of its difference derivatives at
the point 0, while the latter may be expressed in terms of the values of the
polynomial on E,.

2.6. Now, using the results of Section 2.5 and hypothesis (13) from Section 2.4,

we may obtain an explicit formula for the dimension of the space A=,
Let p*(n) denote the number of partitions of » into an (unordered) sum of k
positive integral terms. We set

P =3 P and pln)= 5 pi)
Then
dim%!“-’=pk(k-§-lmi)+p,(k+l—»»1)-—p{k+l—1). (17)

From Theorems 2 and 3, it follows that the desired dimension is equal to
dim Sym Jf*'~ ' If hypothesis (13) is valid, it will be equal to

dim Sym Ri+-1,

Note that the space Sym “C[4,, . . ., 4.} of homogeneous symmetric polynomi-
als of degree & in / variables has dimension (k). By Theorem 6, in this space
the codimension R%, with k > 2/ —4, is equal to the number of orbits of the
group S(Yin E,, ie.,

i—2
Zop(m)-
Thus, the quantity we wish to find assumes the form
o2
plk+1—1)— ZOP(M)-

Now we use the simple combinatorial identity

PHn) = p(n — k). (18)
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whence it follows that when & > I,

ph+I=D=pk+I-1)= ¥ plk+1-1)

Jek+i

=32
= 3 pll+k—j—1)= Zop(m),

Fzkw

since p.{n) = p(n) when J = n. Moreover, Equation (17) is proved when k = /.
Since neither side of the equality is altered if & and / are interchanged, the
formula has been proved completely,

Let us caiculate the generating function f;(x, y) of the binary sequence
&, = dim A,

From the identity (18), it may easily be proved that
2 P mxtym = [T (1—xp)-, 19

The right-hand side of (17) may be represented in the form
3 ) 7 . k11
pr(k+l—1)+2p1(k+1_l)~ Y plk+1-1).
J=0 J=0 J=0

Muitiplying this expression by x*y’ and summing over & and I, we arrive at the
series

,,E P - paix, ),
where

— { i
P y) = N xMyle ¥ xbylo Y ykp
kzjif =0 kzotfz=j kz00z0
kdle=nst i kdl=n+1i k4lmm4]

PLEE R N R Y
= T xkprei-k T oxrrl-hio Y —xy
dsxEn 0sig; X —y

Hence
Sal%,9) =;§;~;(x2!11(1 —E)T -y —xy’)“‘). (20)

Suppose that @, =%, ,,_,a. . The function Oulf) =3 a,1" may be obtained
from fy(x, ¥} if we set x = y==1



150 A A KiriLrov, M. L. KONTSEVICH AND

A. 1. MoLev

Finding the values of the indeterminate form in Equation (20) by means of

1."Hopital’s rule, we obtain

2z

2

Pul(t) = Bjox] —F = —

Ma+xy IT0-x)

iz¢ IEY: S
]xlﬁiy yi
2 2 2

- Thx fgoi’"‘“x’y_ Izoi”xyl

a—x» ITa-x
=0 iz ¢ o gt

=m~i~_m(2+ ) (tmz)sz).
[T a—em Y

nzi

We set

@(1‘)= z p{")"”m H (IWIb)—‘.
nz0 Bzl

Then
-

1

P ,
7O =20 ¥ ;= 2O 5

7
4 I
izl

Substituting this in the expression obtained above, we arrive at the equality

Qo) = 122(H) + UP() — 2P(HD (D) 21
where
H=Y V=3 domr,

and d(n) denotes the number of divisors of n. We finally have

@, = (n+ Dpln — 1) — 2"21 Ayl — k — 1), 22

or

a4 =20 -1+ 3 [olk)

— 2d(R)}p(n — K — 1), (23)

thatis, a, = 2p{n — 1) — pln ~ 2) — pln — 3) + p(n — 5) + 2p(n —
6) +4dp(n —7) +4p(n — 8) .. ., where o(k) is the sum of the divisors of k, and

(k) is the number of divisors of k.
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Using Ramanujan’s formula [8], we obtain the asymptotic expression

1
o)y~ -4————\/3 exp{n./2n/3). (24)

Without using the hypothesis (13), only the following weaker assertion may
be obtained:

2
Ima,~xn [zn

3

Part IIl. Associative algebra generated by two general vector fields
on the real line

3.1. Suppose that £ and n are two vector fields from the space Vect R! that are
in general position (cf. Section 2.1).

We are interested in the dimension of the homogeneous components of the
space it = A(x, y)/I(€, i), where A(x, ¥) is a free associative algebra with genera-
tors x and y and J(Z, ) is the kernel of a homomorphism of A(x, y) into the
algebra of differential operators on the real line: x =&, y —#.

The space p is bigraded by the degrees of x and y, and g = @ ,, p*. Our
problem is to find the dimension of the space p* '

We introduce the notation C.x,,...,x] to denote the space of homo-
geneous polynomials in the variables x,....,x; of degree %k, where
C.x, ..., x;1is the space of polynomials of degree at most &.

In the case / =1, the dimension of the space p*’ may be easily calculated
directly. We therefore set [ = 2.

In the same way as Section 2.2, it may be proved that the dimension of g*
coincides with the dimension of the space Sym{p(x, d)C.[x, d}), where
x=(xy,...,%)and d=d/ds,

plx, d) = +d)n+x+d) (o + -+ x+d),

it may be assumed that d is an independent variable) and the projector Sym acts
only on the variables x, ..., x.
For the sake of convenience in further calculations, we may set d = 1, and let

M= Sym(p(x)Cailx]), ¥ =Sym(p(x)C,lx],  p(x) =plx, 1).

Using the methods developed in Theorems 4, 3, and 6 of Part 2, and applying
them to the study of the ideal I*!, we may obtain the following bound on the
dimension of the space I*:

H

dim 140 ”’g; (2ds) + Pe(s) — pLs). (25)

Our problem is to prove the opposite equality.
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1et us decompose the polynomial
Py =0+ D0+ x5+ Dk +x+x+10 -+ +x,+ 1)

into homogeneous terms:
P(x) = po(x) + p(x) +- -+ pr{x)
Lemma 6. Hfk=1-2,

Sym(p,_C,fx]) = Sym C,..,_,[x].

For the proof, see Lemma 2 in {6].
Since the dimension of the space of all homogeneous symmetric polynomials

of degree (k + ) of [ variables is equal to p,(k + /), then, using the self-evident
representation

Ik-f-i,l — Ik,J+Jk+ Lt
from Lemma 6, the following inequality may be obtained:

dim Py zdim I+ pe+0), kzl-3 (26)
Considering 72 separately, we find that

k1
dim I*? =dim I** = ¥ p,(s).
s==1
Using Equation (26) and the fact that dim I* is symmetric with respect to the
indices & and [, we obtain the inequality

+I-1

k
dim 7%/ = Zo (p(3) + pi(s) — p(s))-
Comparing this with (25) leads us to the following conclusion:

Theorem 7. The dimension of the space u*’' of homogeneous components of the
algebra A(x, y)/I, where I1=K¢, n) and & and n are vector fields of general
position, may be calculated from the formula

k+i—1}
dim U = Zo (p:(8) + pie(s) — pls)).
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