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Abstract
We consider the polynomial current Lie algebra gl(n)[x] corresponding to the gen-
eral linear Lie algebra gl(n), and its factor-algebra gm by the ideal

∑
k≥m gl(n)xk.

We construct two families of algebraically independent generators of the center of
the universal enveloping algebra U(gm) by using the quantum determinant and the
quantum contraction for the Yangian of level m.
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0. Introduction

Let g be a finite-dimensional complex Lie algebra. Denote by φ the canonical
isomorphism φ : S(g) → grU(g) of the symmetric algebra S(g) to the graded algebra
grU(g) associated with the universal enveloping algebra U(g). The restriction of φ
to the subalgebra I(g) of g-invariants in S(g) yields an isomorphism

φ : I(g) → gr Z(g), (0.1)

where Z(g) denotes the center of U(g).
If the Lie algebra g is reductive, each of the algebras I(g) and Z(g) admits a

family of algebraically independent generators (see, e.g., Dixmier [Di], Ch. 7.3,
7.4).

For some non-reductive Lie algebras g an analogous property still takes place. A
class of such Lie algebras was investigated by Rais and Tauvel in [RT]. In that paper
one considers the polynomial current Lie algebra g[x] = g⊗ C[x] corresponding to
a semi-simple complex Lie algebra g, and, given a positive integer m, one defines

the factor-algebra gm of g[x] by the ideal
∑
k≥m

gxk. One of the main results of [RT]

is a construction of a family of algebraically independent generators of the algebra
I(gm) of gm-invariants in S(gm).

In the present paper we study the Lie algebra gm corresponding to the complex
reductive Lie algebra g = gl(n), that is, gm is the factor-algebra of gl(n)[x] by the

ideal Im =
∑
k≥m

gl(n)xk. (Note that the construction of [RT] can be easily transfered

to this case as well.)
Our aim is to construct families of algebraically independent generators of the

center Z(gm) of the universal enveloping algebra U(gm) (that is, ‘to quantize’ the
construction of [RT]). We give explicit expressions for the generators in terms of
the basis elements of gm. Using isomorphism (0.1) we thus obtain a family of
algebraically independent generators of the algebra I(gm).

The main results are formulated in Section 1. The proofs are based on some
properties of the algebra Ym(n) = Ym(gl(n)) called the Yangian of level m for the
Lie algebra gl(n) (see [C], [Dr]).

First, we prove a Poincaré–Birkhoff–Witt-type theorem for the algebra Ym(n).
Then we show that Ym(n) admits a filtration such that the corresponding graded
algebra is isomorphic to U(gm).

Further, we use the fact (see, e.g., [MNO]) that the coefficients of both the
quantum determinant qdet T (u) ∈ Ym(n)[u] and the quantum contraction z(u) ∈
Ym(n)[u] belong to the center of the algebra Ym(n). So, taking the images of these
coefficients in the graded algebra grYm(n) ≃ U(gm) we get two families of central
elements in U(gm).

Finally, using the results of [G] and [RT] we apply an analogue of the Harish-
Chandra homomorphism for the algebra U(gm) to prove that the images of the
coefficients of the quantum determinant are algebraically independent and generate
the center of U(gm). To prove this property for the images of the coefficients of the
quantum contraction we apply the quantum Liouville formula [MNO].

As a corollary, we obtain that the coefficients of the quantum determinant, as
well as those of the quantum contraction, are algebraically independent generators
of the center of Ym(n).



3

This work can be regarded as a generalization of [M] where an analogous ap-
proach was applied to the construction of Casimir elements and computing their
Harish-Chandra images for the classical Lie algebras of series A–D.

I am grateful to Grigori Olshanskĭı who drew my attention to the papers [RT]
and [G]. I would also like to thank him for many helpful discussions.

1. Construction of Casimir elements

Denote by Eij , (i, j = 1, . . . , n) the standard basis of the general linear Lie

algebra gl(n). Then the elements E
(k)
ij := Eijx

k with 1 ≤ i, j ≤ n and 0 ≤ k ≤ m−1

form a basis of the Lie algebra gm = gl(n)[x]/Im; see Introduction. Let u be a formal
variable. To construct the first family of Casimir elements, introduce the following
U(gm)-valued polynomials in u:

Eij(u) := δiju
m + (E

(0)
ij −m(j − 1)δij)u

m−1 + E
(1)
ij um−2 + · · ·+ E

(m−1)
ij ,

where i, j = 1, . . . , n, and define the “determinant” of the noncommutative matrix
E(u) = (Eij(u))

n
i,j=1 by the formula

detE(u) :=
∑
p∈Sn

sgn(p)Ep(1),1(u) · · ·Ep(n),n(u), (1.1)

where Sn denotes the symmetric group. This is a polynomial in u with coefficients
in U(gm):

detE(u) = umn +

mn∑
k=1

ζ̃ku
mn−k, ζ̃k ∈ U(gm). (1.2)

Note that setting deg E
(p)
ij = p defines a grading on U(gm). We let ζk denote the

component of the highest degree of the element ζ̃k, k ∈ {1, . . . ,mn}. To write
explicit formulas for the ζk, denote

F
(r)
ij = E

(r−1)
ij for 1 < r ≤ m, and

F
(1)
ij = E

(0)
ij −m(j − 1)δij .

Define the numbers r ∈ {1, . . . ,m} and s ∈ {1, . . . , n} by the formula k = m(s −
1) + r. Then

ζk =
∑

i1<···<is
j1+···+js=k

∑
σ∈Ss

sgn(σ)F
(j1)
iσ(1)i1

· · ·F (js)
iσ(s)is

. (1.3)

Note that in the case m = 1 the ζk coincide with the well-known Capelli elements
in Z(gl(n)) (see, e.g., [HU]).

Let us now describe the second construction. For any 0 ≤ p ≤ m− 1 introduce

the matrix E(p) = (E
(p)
ij )ni,j=1. Represent k ≥ 1 in the form k = m(s− 1) + r with

s ≥ 1 and 1 ≤ r ≤ m and define the element θk by the formula

θk =
∑

r1+···+rs=k

rs · trE(r1−1) · · ·E(rs−1), (1.4)
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where each ri runs over the set {1, . . . ,m}.
In particular, in the case m = 1 we have θk = trEk, where E = E(0). These are

the well-known central elements of U(gl(n)) (see, e.g., [PP]).

The following is our main result.

Theorem 1.1. All the elements ζk with k = 1, . . . ,mn and θk with k = 1, 2, . . . be-
long to the center Z(gm) of the algebra U(gm). Moreover, each family {ζ1, . . . , ζmn}
and {θ1, . . . , θmn} is algebraically independent and generates Z(gm).

The theorem will be proved in Section 3.

Example 1.2. Let m = n = 2. We have

detE(u) = u4 +
(
E

(0)
11 + E

(0)
22 − 2

)
u3 +

(
E

(1)
11 + E

(1)
22 + E

(0)
11 (E

(0)
22 − 2)− E

(0)
21 E

(0)
12

)
u2

+
(
E

(0)
11 E

(1)
22 + E

(1)
11 (E

(0)
22 − 2)− E

(0)
21 E

(1)
12 − E

(1)
21 E

(0)
12

)
u+ E

(1)
11 E

(1)
22 − E

(1)
21 E

(1)
12 .

Hence, the first family looks as follows:

ζ1 = E
(0)
11 + E

(0)
22 − 2,

ζ2 = E
(1)
11 + E

(1)
22 ,

ζ3 = E
(0)
11 E

(1)
22 + E

(1)
11 (E

(0)
22 − 2)− E

(0)
21 E

(1)
12 − E

(1)
21 E

(0)
12 ,

ζ4 = E
(1)
11 E

(1)
22 − E

(1)
21 E

(1)
12 .

For the second family we have:

θ1 = E
(0)
11 + E

(0)
22 ,

θ2 = 2
(
E

(1)
11 + E

(1)
22

)
,

θ3 = 2
(
E

(0)
11 E

(1)
11 + E

(0)
22 E

(1)
22 + E

(0)
21 E

(1)
12 + E

(0)
12 E

(1)
21

)
+ E

(1)
11 E

(0)
11 + E

(1)
22 E

(0)
22 + E

(1)
21 E

(0)
12 + E

(1)
12 E

(0)
21 ,

θ4 = 2
(
E

(1)
11 E

(1)
11 + E

(1)
22 E

(1)
22 + E

(1)
21 E

(1)
12 + E

(1)
12 E

(1)
21

)
.

2. Poincaré–Birkhoff–Witt theorem for the algebra Ym(n)

First we define the Yangian Y(n) = Y(gl(n)) for the Lie algebra gl(n) (see, e.g.,

[Dr], [MNO]). It is the associative algebra with countably many generators t
(1)
ij ,

t
(2)
ij , . . . where 1 ≤ i, j ≤ n, and defining relations

[t
(r+1)
ij , t

(s)
kl ]− [t

(r)
ij , t

(s+1)
kl ] = t

(r)
kj t

(s)
il − t

(s)
kj t

(r)
il , (2.1)

where r, s = 0, 1, 2, . . . and t
(0)
ij := δij .
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The relations (2.1) can be rewritten in the following equivalent form:

[t
(r)
ij , t

(s)
kl ] =

min(r,s)−1∑
p=0

(
t
(p)
kj t

(r+s−1−p)
il − t

(r+s−1−p)
kj t

(p)
il

)
, (2.2)

where r, s = 1, 2, . . . and 1 ≤ i, j, k, l ≤ n.
The algebra Ym(n) is defined as the factor-algebra of Y(n) by the ideal Jm

generated by all the elements t
(r)
ij with 1 ≤ i, j ≤ n and r > m. Following [C], we

call it the Yangian of level m for the Lie algebra gl(n).

Let us denote by τ
(r)
ij , (1 ≤ r ≤ m) the image of the generator t

(r)
ij ∈ Y(n) in

Ym(n). Then the τ
(r)
ij satisfy the same relations (2.1) and (2.2), where one replaces

t
(r)
ij with τ

(r)
ij or 0, depending on whether 1 ≤ r ≤ m or r > m.

Equivalently, Ym(n) can be defined as the algebra with the generators τ
(1)
ij , . . . , τ

(m)
ij ,

1 ≤ i, j ≤ n, subject to the relations

[τij(u), τkl(v)] =
1

u− v
(τkj(u)τil(v)− τkj(v)τil(u)),

where u is a formal variable and

τij(u) := δiju
m +

m∑
r=1

τ
(r)
ij um−r ∈ Ym(n)[u]. (2.3)

We shall need the following analogue of the Poincaré–Birkhoff–Witt theorem for
the algebra Ym(n).

Theorem 2.1. Given an arbitrary linear ordering on the set of the generators τ
(r)
ij ,

any element of the algebra Ym(n) is uniquely written as a linear combination of
ordered monomials in the generators.

Proof. By definition, Ym(n) ≃ Y(n)/Jm. Let us first consider a particular linear

ordering defined on the generators t
(r)
ij by setting t

(r)
ij ≤ t

(s)
kl if (r, i, j) ≤ (s, k, l)

in the lexicographical ordering. By the Poincaré–Birkhoff–Witt theorem for the
Yangian Y(n) (see, e.g., [MNO], Corollary 1.23), the ordered monomials

t
(r1)
i1j1

· · · t(rq)iqjq
, t

(r1)
i1j1

≤ · · · ≤ t
(rq)
iqjq

, (2.4)

form a basis in Y(n). We have to show that these monomials with the additional
condition rq ≤ m form a basis of Y(n) modulo the ideal Jm (note that r1 ≤ · · · ≤ rq
by definition of the ordering). Since any element of Jm is uniquely represented as a
linear combination of monomials (2.4), it suffices to prove that for each monomial
occuring in this representation the inequality rq > m holds.

For each pair of generators t
(r)
ij ≥ t

(s)
kl with r > m one has

t
(r)
ij t

(s)
kl = t

(s)
kl t

(r)
ij + a linear combination of t

(p)
ab t

(q)
cd

with t
(p)
ab < t

(q)
cd , p+ q < r + s, and q > m.

(2.5)
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Indeed, by (2.2),

[t
(r)
ij , t

(s)
kl ] =

s−1∑
p=0

(
t
(p)
kj t

(r+s−1−p)
il − t

(r+s−1−p)
kj t

(p)
il

)
,

and (2.5) follows by induction on r + s.

The ideal Jm is spanned by monomials of the form

t
(s1)
k1l1

· · · t(sp)kplp
, p ≥ 1, (2.6)

such that at least one of the indices s1, . . . , sp is greater than m. Choose a maximal

generator t
(si)
kili

in the monomial (2.6) (the inequality si > m should then hold) and
move it to the extreme right position, permuting with the other generators using
(2.5). Repeating this procedure and applying an obvious induction on s1 + · · ·+ sp
we get a representation of the monomial (2.6) as a linear combination of the ordered
monomials (2.4) with rq > m, which proves the claim for the chosen ordering.

Finally, by (2.2), any two generators τ
(r)
ij and τ

(s)
kl commute modulo products

τ
(p)
ab τ

(q)
cd with p + q < r + s. This reduces the proof in the general case (with an

arbitrary ordering on the generators τ
(r)
ij ) to the particular case considered above.

A filtration on the algebra Ym(n) can be defined by setting

deg τ
(r)
ij = r − 1. (2.7)

Denote by grYm(n) the corresponding graded algebra.

Corollary 2.2 (cf. [MNO], Theorem 1.26). The algebra grYm(n) is isomorphic
to the universal enveloping algebra U(gm).

Proof. Denote by τ
(r)
ij the image of the generator τ

(r)
ij in the (r− 1)th component

of grYm(n). Then, comparing the degrees of the elements on the left and right

hand sides of (2.2) we obtain that the elements τ
(r)
ij satisfy the relations

[τ
(r)
ij , τ

(s)
kl ] = δkjτ

(r+s−1)
il − δilτ

(r+s−1)
kj ,

where τ
(r)
ij := 0 for r > m. These are exactly the commutation relations for the Lie

algebra gm in the basis E
(r−1)
ij . So, the mapping E

(r−1)
ij 7→ τ

(r)
ij defines an algebra

homomorphism

U(gm) → grYm(n). (2.8)

By Theorem 2.1 and the Poincaré–Birkhoff–Witt theorem for the algebra U(gm),
its kernel is trivial.
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3. Proof of Theorem 1.1

Let us combine the polynomials τij(u) ∈ Ym(n)[u] defined by (2.3) into the
matrix T (u) = (τij(u))

n
i,j=1. The polynomial

qdet T (u) :=
∑
p∈Sn

sgn(p)τp(1),1(u) · · · τp(n),n(u− n+ 1)

is called the quantum determinant of the matrix T (u) (see [C], [Dr]). Write

qdet T (u) = umn +
mn∑
k=1

dku
mn−k, dk ∈ Ym(n). (3.1)

All the coefficients dk belong to the center of the algebra Ym(n). This follows
immediately from the corresponding property of the quantum determinant for the
Yangian Y(n) (see, e.g., [MNO], Theorem 2.10). Therefore, the images dk of the
elements dk in the graded algebra grYm(n) also belong to its center.

To prove the centrality of the elements ζk it suffices to show that ζk corresponds
to dk under the isomorphism (2.8). This follows from the fact that the image of
the polynomial

τij(u− j + 1) = δij(u− j + 1)m +
m∑

k=1

τ
(k)
ij (u− j + 1)m−k

in grYm(n)[u] is

δiju
m + (τ

(1)
ij −m(j − 1)δij)u

m−1 + τ
(2)
ij um−2 + · · ·+ τ

(m)
ij

which corresponds to Eij(u) under the isomorphism (2.8).

Our next step is the proof of the algebraic independence of the elements ζk.
Let h, n+ and n− denote the subalgebras of gl(n) consisting of all diagonal, upper

triangular and lower triangular matrices, respectively. For any subspace a of gl(n)
we put

am = a⊕ ax⊕ · · · ⊕ axm−1.

Let U(gm)0 denote the centralizer of h in U(gm). Set

L = U(gm)n+m ∩U(gm)0.

One can derive the following facts from the Poincaré–Birkhoff–Witt theorem for
U(gm) (see [G], Proposition 4.2):

(i) L = n−m U(gm) ∩U(gm)0;

(ii) L is a two-sided ideal in U(gm)0;

(iii) U(gm)0 = U(hm)⊕ L .

Hence, the projection χ : U(gm)0 → U(hm) with the kernel L is an algebra ho-
momorphism which is an analogue of the Harish-Chandra homomorphism; cf. [Di],
Ch. 7.4.
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Note that the elements ζ1, . . . , ζmn belong to U(gm)0. Their algebraic indepen-
dence will follow from the algebraic independence of their images in U(hm) under
the homomorphism χ. Set

λ
(r)
i = E

(r−1)
ii for 1 < r ≤ m, and

λ
(1)
i = E

(0)
ii −m(i− 1),

where i = 1, . . . , n. Let us parametrize the indices k by the pairs (r, s) where
r ∈ {1, . . . ,m}, s ∈ {1, . . . , n} and k = m(s− 1) + r. Then we get from (1.3) that

χ(ζk) =
∑

i1<···<is
j1+···+js=k

λ
(j1)
i1

· · ·λ(js)
is

. (3.2)

Let us denote the polynomial (3.2) by Λ
(r)
s and prove that the differentials dΛ

(r)
s

are linearly independent.

Note that Λ
(m)
s is the elementary symmetric polynomial of degree s in the vari-

ables λ
(m)
1 , . . . , λ

(m)
n . Therefore, the matrix A = (ast)

n
s,t=1 defined by

dΛ(m)
s = as1 dλ

(m)
1 + · · ·+ asn dλ

(m)
n (3.3)

is non-degenerated. Further, for 1 ≤ r < m we have

dΛ(r)
s = as1 dλ

(r)
1 + · · ·+ asn dλ

(r)
n

+ a linear combination of dλ(p)
q with p > r.

(3.4)

Let us combine the coefficients of dλ
(r)
s in the expressions for the differentials dΛ

(r)
s

into a matrix and arrange its rows and columns in accordance with the lexico-
graphical ordering on the pairs (r, s). Then (3.3) and (3.4) imply that this matrix
is block-triangular with m identical diagonal n × n-blocks equal to the matrix A.

This proves the linear independence of the differentials dΛ
(r)
s and hence, the alge-

braic independence of the polynomials Λ
(r)
s .

To complete the proof of Theorem 1.1 for the family {ζk} we need to show that
any central element in the algebra U(gm) can be expressed as a polynomial in the
elements ζk.

It follows from [RT], Théorème 4.5, that the algebra I(gm) admits a system

of algebraically independent homogeneous generators P
(r)
s with 1 ≤ r ≤ m and

1 ≤ s ≤ n such that P
(r)
s has the degree s. Thus, due to the isomorphism

gr Z(gm) ≃ I(gm), it suffices to verify that the elements ζk have the same degrees as

the generators P
(r)
s (in the sense of the canonical filtration of the universal envelop-

ing algebra U(gm)). However, it is clear from (1.3) that ζk with k = m(s− 1) + r
is an element of degree s, which completes the proof.

The above argument implies the following corollaries.

Corollary 3.1. The coefficients dk, k = 1, . . . ,mn of the quantum determinant
qdet T (u), defined by (3.1) form a family of algebraically independent generators of
the center of the algebra Ym(n).
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Corollary 3.2. The center Z(gm) of the algebra U(gm) is isomorphic to the sub-

algebra in C[λ(r)
s ], (1 ≤ r ≤ m, 1 ≤ s ≤ n), generated by the polynomials Λ

(r)
s .

This isomorphism can be regarded as an analogue of the Harish-Chandra iso-
morphism for the algebra U(gm) (cf. [Di], Ch. 7.4).

Let us turn now to the second family {θk}.
Define the quantum contraction z(u) for Ym(n) by the formula (cf. [MNO])

z(u) =
1

n
tr T −1(u− n+ 1)T (u+ 1). (3.5)

We regard it as a formal series in u−1 with coefficients from Ym(n):

z(u) = 1 + z1u
−1 + z2u

−2 + · · · , zp ∈ Ym(n).

The polynomial qdet T (u) and the series z(u) are related by means of the quantum
Liouville formula (see [MNO], Theorem 5.7):

z(u) =
qdet T (u+ 1)

qdet T (u)
. (3.6)

So, the elements zp are central in Ym(n). The identity z(u) qdet T (u) = qdet T (u+
1) implies that for k ≥ 1

zk + zk−1d1 + · · ·+ z1dk−1 + dk =

k∑
i=0

(
mn− k + i

i

)
dk−i, (3.7)

where d0 := 1 and dk := 0 for k > mn. Using induction on k we deduce from (3.7)
that for k = 1, . . . ,mn

zk+1 = −k dk + a polynomial in d1, . . . , dk−1. (3.8)

Moreover, examining the degrees of the elements in (3.7) we obtain that the image
of (3.8) in the graded algebra grYm(n) has the form

zk+1 = −k dk + a polynomial in d1, . . . , dk−1. (3.9)

Now, Corollary 3.1 and (3.8) imply that z2, . . . , zmn+1 are algebraically independent
generators of the center of the algebra Ym(n), while the proof of the first part of
Theorem 1.1 and (3.9) imply that z2, . . . , zmn+1 are those of the center of grYm(n).

To complete the proof of Theorem 1.1 let us compute the images of z2, . . . , zmn+1

under the isomorphism grYm(n) ≃ U(gm).
Denote

T0(u) = u−mT (u) = 1 + T (1)u−1 + · · ·+ T (m)u−m,

where T (k) is the matrix (τ
(k)
ij )ni,j=1, and consider the series

1

n
tr T −1

0 (u)T0(u+ n) =: y(u) = 1 + y1u
−1 + y2u

−2 + · · · .
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We have

T −1
0 (u) = 1 +

∞∑
k=1

Θku
−k

with
Θk =

∑
l≥1

∑
i1+···+il=k

(−1)lT (i1) · · · T (il),

and

T0(u+ n) = 1 +

∞∑
k=1

u−k
k∑

p=1

(−n)k−p

(
k − 1

k − p

)
T (p),

where T (k) := 0 for k > m. The identity T −1
0 (u)T0(u) = 1 implies the relations

Θk +Θk−1T (1) + · · ·+ T (k) = 0, k ≥ 1. (3.10)

Let T (k)
= (τ

(k)
ij )ni,j=1 denote the image of T (k) in grYm(n). We find with the use

of (3.10) that for k = m(s− 1) + r with 2 ≤ r ≤ m the image of yk+1 in grYm(n)
is given by the formula

yk+1 = (−1)s
∑

r1+···+rs=k

rs · tr T
(r1) · · · T (rs)

(3.11)

and for k = m(s− 1) + 1 by the formula

yk+1 = (−1)s
∑

r1+···+rs=k

rs · tr T
(r1) · · · T (rs)

+ const · tr
(
T (m)

)s−1

. (3.12)

Finally, since

z(u) =

(
u+ 1

u− n+ 1

)m

y(u− n+ 1),

the same formulas (3.11) and (3.12) hold for the zk+1 with a different value of
‘const’ in (3.12).

This means that the image of zk+1 in the algebra U(gm) coincides with (−1)sθk
or (−1)sθk+const ·θk−1 for k = m(s−1)+r with 2 ≤ r ≤ m or r = 1, respectively.
This completes the proof.
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