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Schur–Weyl duality

The symmetric group Sk acts naturally on the tensor product

space

CN ⊗ CN ⊗ . . .⊗ CN , k factors,

by permuting the factors. On the other hand, CN carries the

vector representation of the Lie algebra glN so that the tensor

product space is a representation of glN .

The actions of Sk and glN commute with each other.
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L(λ) is the irreducible representation of glN with the highest

weight λ,
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fλ equals the number of standard λ-tableaux U .

Let λ = (5,3,1), λ ` 9. The following λ-tableau U is standard

9
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Refined decomposition

(CN)⊗k ∼= L
λ`k

L
sh(U)=λ

ΦU (CN)⊗k ,

where each subspace LU = ΦU (CN)⊗k

is a glN -submodule isomorphic to L(λ).
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If U = U r is the row tableau of shape λ, then the subspace LU r

coincides with the image of the Young symmetrizer,

LU r = HU r AU r (CN)⊗k ,

where HU r and AU r are the row symmetrizer and column

anti-symmetrizer of U r .

Problem: Find an explicit formula for the element

φU ∈ C [Sk ]

whose image in the representation of Sk coincides with ΦU .
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Given a partition λ of k denote the corresponding irreducible

representation of Sk by Vλ. The vector space Vλ is equipped

with an Sk -invariant inner product ( , ).

The orthonormal Young basis {vU} of Vλ is parameterized by

the set of standard λ-tableaux U .
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For any i ∈ {1, . . . , k − 1} set si = (i , i + 1). We have

si · vU = d vU +
√

1− d2 vsi U ,

where d = (ci+1 − ci)
−1, ci = ci(U) is the content b − a

of the cell (a,b) occupied by i in a standard λ-tableau

U , and the tableau si U is obtained from U by swapping

the entries i and i + 1.



The group algebra C [Sk ] is isomorphic to the direct sum of

matrix algebras

C [Sk ] ∼= L
λ`k

Matfλ(C),

where fλ = dim Vλ. The matrix units eUU ′ ∈ Matfλ(C) are

parameterized by pairs of standard λ-tableaux U and U ′.

Identify C [Sk ] with the direct sum of matrix algebras by

eUU ′ =
fλ
k !
φUU ′ ,

where φUU ′ is the matrix element corresponding to the basis

vectors vU and vU ′ of the representation Vλ,

φUU ′ =
∑

s∈Sk

(s · vU , vU ′) · s−1 ∈ C [Sk ].



The group algebra C [Sk ] is isomorphic to the direct sum of

matrix algebras

C [Sk ] ∼= L
λ`k

Matfλ(C),

where fλ = dim Vλ. The matrix units eUU ′ ∈ Matfλ(C) are

parameterized by pairs of standard λ-tableaux U and U ′.

Identify C [Sk ] with the direct sum of matrix algebras by

eUU ′ =
fλ
k !
φUU ′ ,

where φUU ′ is the matrix element corresponding to the basis

vectors vU and vU ′ of the representation Vλ,

φUU ′ =
∑

s∈Sk

(s · vU , vU ′) · s−1 ∈ C [Sk ].



For the diagonal elements we write

eU = eUU and φU = φUU .

Since eU eV = 0 for U 6= V, e 2
U = eU , and

1 =
∑
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∑
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The Jucys–Murphy elements of C [Sk ] are defined by

x1 = 0, xi = (1 i) + (2 i) + · · ·+ (i − 1 i), i = 2, . . . , k .

They generate a commutative subalgebra of C [Sk ]. Moreover,

xk commutes with all elements of Sk−1.

The vectors of the Young basis are eigenvectors for the action

of xi on Vλ. For any standard λ-tableau U we have

xi · vU = ci(U) vU , i = 1, . . . , k .
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Now let k > 2 and let λ be a partition of k . Fix a standard

λ-tableau U and denote by V the standard tableau obtained

from U by removing the cell α occupied by k . Denote the shape

of V by µ.

Murphy’s formula. We have the relation in C [Sk ],

eU = eV
(xk − a1) . . . (xk − al)

(c − a1) . . . (c − al)
,

where a1, . . . ,al are the contents of all addable cells of µ except

for α, while c is the content of the latter.

Equivalently,

eU = eV
u − c
u − xk

∣∣∣
u=c

.



Now let k > 2 and let λ be a partition of k . Fix a standard

λ-tableau U and denote by V the standard tableau obtained

from U by removing the cell α occupied by k . Denote the shape

of V by µ.

Murphy’s formula. We have the relation in C [Sk ],

eU = eV
(xk − a1) . . . (xk − al)

(c − a1) . . . (c − al)
,

where a1, . . . ,al are the contents of all addable cells of µ except

for α, while c is the content of the latter.

Equivalently,

eU = eV
u − c
u − xk

∣∣∣
u=c

.



Now let k > 2 and let λ be a partition of k . Fix a standard

λ-tableau U and denote by V the standard tableau obtained

from U by removing the cell α occupied by k . Denote the shape

of V by µ.

Murphy’s formula. We have the relation in C [Sk ],

eU = eV
(xk − a1) . . . (xk − al)

(c − a1) . . . (c − al)
,

where a1, . . . ,al are the contents of all addable cells of µ except

for α, while c is the content of the latter.

Equivalently,

eU = eV
u − c
u − xk

∣∣∣
u=c

.



Proof.

Write

eV =
∑
V→U ′
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the value of this rational function at u = c is eU .
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Corollary

We have

φU = Hλ,µ φV
u − c
u − xk

∣∣∣
u=c

with

Hλ,µ =
(a1 − c) . . . (ap − c)(c − ap+1) . . . (c − al)

(b1 − c) . . . (bq − c)(c − bq+1) . . . (c − br )
,

where the numbers a1, . . . ,ap, c,ap+1, . . . ,al are the contents

of all addable cells of µ and b1, . . . ,bq, c,bq+1, . . . ,br are the

contents of all removable cells of λ with both sequences written

in the decreasing order.



Remark

Consider the character χλ of Vλ,

χλ =
∑

s∈Sk

χλ(s) s ∈ C [Sk ].

We have

χλ =
∑

sh(U)=λ

φU ,

summed over all standard λ-tableaux U .

Hence for the normalized characters χ̂λ = fλ χλ/k ! we have

χ̂λ =
∑
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χ̂µ
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(c − a1) . . . (c − al)
.



Remark

Consider the character χλ of Vλ,

χλ =
∑

s∈Sk

χλ(s) s ∈ C [Sk ].

We have

χλ =
∑

sh(U)=λ

φU ,

summed over all standard λ-tableaux U .

Hence for the normalized characters χ̂λ = fλ χλ/k ! we have

χ̂λ =
∑
µ→λ

χ̂µ
(xk − a1) . . . (xk − al)

(c − a1) . . . (c − al)
.



For any distinct indices i , j ∈ {1, . . . , k} introduce the rational

function in two variables u, v with values in the group algebra

C [Sk ] by

ρij(u, v) = 1− (i j)
u − v

.

Take k complex variables u1, . . . ,uk and set

φ(u1, . . . ,uk ) = ρ12(u1,u2) ρ13(u1,u3) ρ23(u2,u3)

× . . . ρ1k (u1,uk ) ρ2k (u2,uk ) . . . ρk−1,k (uk−1,uk ).

Motivation: The image of ρij(u, v) in End (CN)⊗k is

the Yang R-matrix.
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Theorem

Suppose that λ is a partition of k and let U be a standard

λ-tableau. Set ci = ci(U) for i = 1, . . . , k.

Then the consecutive evaluations

φ(u1, . . . ,uk )
∣∣
u1=c1

∣∣
u2=c2

. . .
∣∣
uk=ck

of the rational function φ(u1, . . . ,uk ) are well-defined. The

corresponding value coincides with the matrix element φU ,

φU = φ(u1, . . . ,uk )
∣∣
u1=c1

∣∣
u2=c2

. . .
∣∣
uk=ck
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Example: λ = (k). Then

U = 1 2 · · · k ci = i − 1,

and

φU =
∑
σ∈Sk

σ,

is the symmetrizer in C [Sk ]. By the theorem,

φU =
(

1 +
(1 2)

1

)(
1 +

(1 3)

2

)(
1 +

(2 3)

1

)

× . . .
(

1 +
(1 k)

k − 1

)(
1 +

(2 k)

k − 2

)
. . .
(

1 +
(k − 1 k)

1

)
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Example: λ = (2,1),

U =
3
1 2 V =

2
1 3

Then c1 = 0, c2 = 1, c3 = −1 for U , and

φU =
(

1 + (1 2)
)(

1− (1 3)
)(

1− (2 3)

2

)
,
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Example: λ = (22),

φ(u1,u2,u3,u4) = ρ12(u1,u2) ρ13(u1,u3) ρ23(u2,u3)

× ρ14(u1,u4) ρ24(u2,u4) ρ34(u3,u4).

Take the standard λ-tableau

U =
1
3

2
4

The contents are c1 = 0, c2 = 1, c3 = −1, c4 = 0.
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Taking u1 = 0, u2 = 1, u3 = −1, u4 = u we get

φ(0,1,−1,u) =
(

1 + (1 2)
)(

1− (1 3)
)(

1− (2 3)

2

)

×
(

1 +
(1 4)

u

)(
1 +

(2 4)

u − 1

)(
1 +

(3 4)

u + 1

)
.
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corresponding value coincides with φU .
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Next step:
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,

where c1 = 0, c2 = 1, c3 = −1, c4 = 0 and

x4 = (1 4) + (2 4) + (3 4).



Finally, apply Murphy’s formula to get

3∏
i=1

(
1− 1

(u − ci)2

) u
u − c4

· φV
u − c4

u − x4

∣∣∣
u=c4

= φU .

Thus,

φU = φ(0,1,−1,0)

=
1
2

(
1 + (1 2)

)(
1− (1 3)

)(
2− (2 3)

)

×
(

2− (1 4)− (2 4)− (3 4)
)(

2 + (1 4) + (2 4) + (3 4)
)
.



Finally, apply Murphy’s formula to get

3∏
i=1

(
1− 1

(u − ci)2

) u
u − c4

· φV
u − c4

u − x4

∣∣∣
u=c4

= φU .

Thus,

φU = φ(0,1,−1,0)

=
1
2

(
1 + (1 2)

)(
1− (1 3)

)(
2− (2 3)

)

×
(

2− (1 4)− (2 4)− (3 4)
)(

2 + (1 4) + (2 4) + (3 4)
)
.


