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Schur—Weyl duality

The symmetric group & acts naturally on the tensor product
space

cVeocNg...oCVN, Kk factors,

by permuting the factors. On the other hand, CN carries the
vector representation of the Lie algebra gl so that the tensor

product space is a representation of gl,.
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The symmetric group & acts naturally on the tensor product
space
cVeocNg...oCVN, Kk factors,

by permuting the factors. On the other hand, CN carries the
vector representation of the Lie algebra gl so that the tensor

product space is a representation of gl,.

The actions of & and gly commute with each other.
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(CMPR=ahL(N),
A
where X runs over partitions A = (Aq,..., An),
A =--->2 Ay >=0suchthat \{ +---+ Ay =K,

L(X) is the irreducible representation of gl with the highest

weight A,

f, is the dimension of the irreducible representation of &

associated with ).



f\ equals the number of standard A-tableaux /.
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f\ equals the number of standard A-tableaux /.

Let A =(5,3,1), AF 9. The following A-tableau i/ is standard
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Refined decomposition

((CN)®k§ D ® ¢M(CN)®k,
Ak sh(U)=X

where each subspace Ly = ¢y (CN)®k

is a gly-submodule isomorphic to L(A).



If i/ =U" is the row tableau of shape A, then the subspace L

coincides with the image of the Young symmetrizer,
Lyr = Hyr Aur(CN)®K,

where Hy;r and Ay are the row symmetrizer and column

anti-symmetrizer of 4".



If i/ =U" is the row tableau of shape A, then the subspace L

coincides with the image of the Young symmetrizer,
Lyr = HyrAyr(CV)K,

where Hy;r and Ay are the row symmetrizer and column

anti-symmetrizer of 4".

Problem: Find an explicit formula for the element

¢u S C[@)k]

whose image in the representation of & coincides with &;,.



Young basis

Given a partition \ of k denote the corresponding irreducible
representation of G, by V,. The vector space V), is equipped

with an &-invariant inner product ( , ).



Young basis

Given a partition \ of k denote the corresponding irreducible
representation of G, by V,. The vector space V), is equipped

with an &-invariant inner product ( , ).

The orthonormal Young basis {v;,} of V) is parameterized by

the set of standard \-tableaux U/.



Foranyie {1,...,k—1}sets;=(i,i+1). We have
Sj‘Vu:qu+ V1_d2v3ﬂ/{7

where d=(ci1—¢)', ¢ =cj(d) isthecontent b—a
of the cell (a,b) occupiedby |/ inastandard A-tableau
U, andthetableau s;i/ isobtained from ¢ by swapping

the entries /i and J-+1.



The group algebra C[S&] is isomorphic to the direct sum of
matrix algebras

Cl6k] = & Maty, (C),
Ak

where f, = dim V). The matrix units g,,,, € Mat;, (C) are

parameterized by pairs of standard \-tableaux &/ and I/'.



The group algebra C[S&] is isomorphic to the direct sum of
matrix algebras

Cl6k] = & Maty, (C),
Ak

where f, = dim V). The matrix units g,,,, € Mat;, (C) are
parameterized by pairs of standard \-tableaux &/ and I/'.

Identify C[S,] with the direct sum of matrix algebras by

A\
Cuur = Kl P s

where ¢,,,, is the matrix element corresponding to the basis

vectors v;, and v;,, of the representation V),

(buu/ - Z (S . VM7 Vu/) . 5_1 S C[@k]

SeSk



For the diagonal elements we write

ey = euu and bu = Pr-
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For the diagonal elements we write

ey = euu and bu = Pr-

Since e, e, =0ford £V, e =¢,, and

1=) Z ey

Ak sh(id)=

the elements we want are ¢,, (or e,,), yielding

(CM)Ph = g @ Py (CN)®K
ARk sh(d)=A



The Jucys—Murphy elements of C[&] are defined by
x1 =0, xi=(N+@N+---+({—-10), i=2,...,k.

They generate a commutative subalgebra of C[S]. Moreover,

X, commutes with all elements of Gy_.



The Jucys—Murphy elements of C[&] are defined by
x1 =0, xi=(N+@N+---+({—-10), i=2,...,k.

They generate a commutative subalgebra of C[S]. Moreover,

X, commutes with all elements of Gy_.

The vectors of the Young basis are eigenvectors for the action

of x; on V). For any standard A-tableau &/ we have

Xi - Vi = Ci(U) Vs i=1,...,k.



The branching properties of the Young basis imply the

corresponding properties of the matrix units. If V is a given

standard tableau with the entries 1,...,k — 1 then
ev — Z eu,
V—-u

where V — U/ means that the standard tableau ¢/ is obtained

from V by adding one cell with the entry k.
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Furthermore,

Xjey = ey Xi= ci(l) ey, i=1,...

for any standard \-tableau U,

and we have the identity in C[&],

Xk:Z Z ck(U) ey,

Ark sh(U)=\

so that x, can be viewed as a diagonal matrix.

K



Now let k > 2 and let X be a partition of k. Fix a standard
A-tableau ¢/ and denote by V the standard tableau obtained
from U/ by removing the cell « occupied by k. Denote the shape
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Now let k > 2 and let X be a partition of k. Fix a standard
A-tableau ¢/ and denote by V the standard tableau obtained
from U/ by removing the cell « occupied by k. Denote the shape

of V by .
Murphy’s formula. We have the relation in C[S],

(Xxk —a1)...(xk — a)
(c—ay)...(c—a)’

eu:ev

where ay, ..., a; are the contents of all addable cells of 1. except
for o, while c is the content of the latter.

Equivalently,
u—c
v u— Xg u=c

ey =¢e




Proof.
Write

ev == Z eul.
V-u'
Then xx e, = aje,, for some i if U’ # U while xx e,, = cey,.



Proof.
Write

ey= > ey

V-’
Then xx e, = aje,, for some i if U’ # U while xx e,, = cey,.

Similarly,

u—=c u-—c
/7: e T TN
Z u u’ eyt Z u u— ck(U)

Y u—x vou VU U AU

Since cx(U") # c for all standard tableaux U/’ distinct from U,

the value of this rational function at u = c is e;,. O



Corollary

We have
u—-c
=H
by = Hrpu oy 0= xp lu—c
with
Hy . — (a1—c)...(ap—c)(c—apt1)...(c—a)
H(by—c)...(bg—c)(c—bgi1)...(c—by)’

where the numbers a, ..., ap, C,ap.1, . .., @ are the contents
of all addable cells of i and by, . .., bg, C, bgy1, ..., by are the

contents of all removable cells of A\ with both sequences written

in the decreasing order.



Remark
Consider the character x, of V,,

Xa= Y xa(s)s € C[&].
SeS

We have
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summed over all standard \-tableaux /.



Remark
Consider the character x, of V,,

Xa= Y xa(s)s € C[&].
SeS

We have

Z (Z)Z/h

sh(U)=X

summed over all standard \-tableaux /.

Hence for the normalized characters x = f\ x,/k! we have

(Xk —a1) .- (X — a)
XA_ZX“ (c—ar)...(c—a)

H—A



For any distinct indices /,j € {1, ..., k} introduce the rational
function in two variables u, v with values in the group algebra
C[Sk] by By

(1))

) —1
pj(u, v) Ty
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For any distinct indices /,j € {1, ..., k} introduce the rational
function in two variables u, v with values in the group algebra

C[&«] by

(1))
pj(u,v) =1— U—_v’
Take k complex variables uy, .. ., ux and set
P(Ut, ..., Uk) = p1a(Un, Uz) prg(Ut, Us) pog(Uz, Us)

X oo pric(Un, Uk) pog(Uz, Uk) - - - pre_q s (Uk—1, U)-

Motivation: ~ The image of p;(u,v) in End(CN)¥ s

the Yang R-matrix.
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Theorem

Suppose that \ is a partition of k and letU be a standard
A-tableau. Setc; = cj(U) fori=1,..., k.

Then the consecutive evaluations

o(uy, . ..

’ uk)‘u1:01 ‘UZZCZ o |Uk:Ck

of the rational function ¢(uy, ..., ux) are well-defined. The

corresponding value coincides with the matrix element ¢,,,

by = o(ur,. ..

7uk)‘U1:C1 ‘Uz:Cz e ’Uk:Ck'
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qbu: Z g,
oeBy

is the symmetrizer in C[S].



Example: X = (k). Then

- [zl [k =it

and
qbu = Z g,
oeBy

is the symmetrizer in C[&4]. By the theorem,
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Example: X = (1%). Then

and ¢, = ) _ sgno-o isthe anti-symmetrizer in C[&],
o€k



Example: X = (1%).

Then

ci=—i+1,

is the anti-symmetrizer in C[&],




Example:

U =

A=(2,1),

1] 2]




Example: X =(2,1),

u— 112 v— |1]3
3 2

Then ¢, =0, =1, cs=-1 for U, and

b= (1+012)) (1-(13)) (1 _(223))



Example: X =(2,1),

u— 112 v— |1]3
3 2

Then ¢, =0, =1, cs=-1 for U, and
¢u:(1+(12))(1_(13))<1_(223)),

while ¢, =0, coc=-1, cs=1 for vV, and

by =(1-02) (1+(13)) (1 +(223))
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Example: X = (22),

AUy, Uz, U, Ug) = pyo(U1, Up) p13(U1, Us) pog(Uz, Us)

X p14(U1, Us) pog(Uz, Us) p3g(Us, Us).

Take the standard \-tableau

Thecontentsare ¢; =0, ¢co=1, c3=-1, ¢4 =0.



Taking w1 =0, w=1, u3=-1, us=u we get

01,10~ (1+12) (1-09) (1 &)

(10 (14 29 (14 B2,




Taking w1 =0, w=1, u3=-1, us=u we get

By the theorem, this rational function is regular at u = 0 and the

corresponding value coincides with ¢,.



We have

01— (14 02) 12 £9) 1, B9




We have

01— (14 02) 12 £9) 1, B9

where




Next step:




Next step:

H(1_( 1 ) u ¢U_C4

e u—c)2lu—c Yu—x4

where ¢ =0, ¢coc=1, cs=-1, ¢,=0 and

x4 =(14)+(24) + (34).



Finally, apply Murphy’s formula to get

1 u U—Cq _
H<1 B (u—c,)2> U—Cy 'stu—x4 u:c4_¢”'

i=1



Finally, apply Murphy’s formula to get

8 u u—=Cy
M- =er) ume & = du
(u— c,) U—Cy U— X4 lu=cy

i=1
Thus,

¢M :¢(0717_170)

(1 + (1 2)) (1 - (13)) (2 - (23))

x (2-(14) - (24) - (34)) (2+(14) + (24) + (34)).

N —



