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The number of nonzero rows is its length, denoted ¢(\).



A diagram (or partition) is a sequence A = (A1, ..., \p) of
integers A;j suchthat A\ > --- > A\, > 0, depicted as an array of
unit boxes.

Example. The diagram A = (5,5,3) is

A =13 /N =3

The number of boxes is the weight of the diagram, denoted |A|.

The number of nonzero rows is its length, denoted ¢(\).
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Let |\| = k and let x* denote the corresponding

irreducible character of the symmetric group &.

Then
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Here |\| =k, |u|=1 |v|=k+1.

In particular,

Cu7#0 = [l =Al+]ul



Let nand N be nonnegative integers with n < N and let Gr, v
denote the Grassmannian of the n-dimensional vector
subspaces of CV. The cohomology ring H*(Grp n) has a basis
of the Schubert classes o) parameterized by all diagrams A

contained in the n x mrectangle, m= N — n.



Let nand N be nonnegative integers with n < N and let Gr, v
denote the Grassmannian of the n-dimensional vector
subspaces of CV. The cohomology ring H*(Grp n) has a basis
of the Schubert classes o) parameterized by all diagrams A

contained in the n x mrectangle, m= N — n.

We have

U)\O'uzg Cxy Ov-
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Here A, u, v are contained in the n x m rectangle.



Let x = (x1, X2, ... ) be an infinite set of variables.



Let x = (x1, X2, ... ) be an infinite set of variables.
Given any partition A = (Ay,..., Ap), define the corresponding

monomial symmetric function by

)\2 >\n
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a(1)
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summed over permutations o of the x; which give distinct

monomials.



Let x = (x1, X2, ... ) be an infinite set of variables.
Given any partition A = (Ay,..., Ap), define the corresponding

monomial symmetric function by

my(x) = xi(‘1)x2(22) . .xj("n),

summed over permutations o of the x; which give distinct
monomials.
The algebra of symmetric functions A is defined as the Q-span

of all monomial symmetric functions.



Examples: power sums symmetric functions

Pk(X) = Mky(X) = Z :
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Examples: power sums symmetric functions

Pr(X) = Mo (x) = > x/,
i—1

elementary symmetric functions

ex(X) = muy(x) = D> X

P> > 1

complete symmetric functions

() => mx) = > X...

[A|=k Iy 221
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Given a diagram ), a reverse A-tableau T is obtained by filling
in the boxes of A with the numbers 1,2, ... in such a way that
the entries weakly decrease along the rows and strictly
decrease down the columns. If a = (i, ) is a box of A we let

T(«) = T(i,j) denote the entry of T in the box «.



Schur functions

Given a diagram ), a reverse A-tableau T is obtained by filling
in the boxes of A with the numbers 1,2, ... in such a way that
the entries weakly decrease along the rows and strictly
decrease down the columns. If a = (i, ) is a box of A we let

T(«) = T(i,j) denote the entry of T in the box «.

Example. A reverse A-tableau for A = (5,5, 3):

565422
413211
2111




The Schur function s,(x) corresponding to A is defined by

Sa(X) = Z H XT(a)

T aex

summed over the reverse \-tableaux T.
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summed over the reverse \-tableaux T.

Example. For A = (2, 1) the reverse tableaux are

ili] with i>j and i> k.




The Schur function s,(x) corresponding to A is defined by

X) = 1] %)

T aex

summed over the reverse \-tableaux T.

Example. For A = (2, 1) the reverse tableaux are

ili] with i>j and i> k.

Hence

sey(X) = D XXX

iZj, i>k



Note also hi(x) = sy (x), ek(X) = Sy (X).



Note also

Tableaux
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Note also hi(x) = sy (x), ek(X) = Sy (X).

Tableaux

Hence




The Schur functions s, (x) parameterized by all diagrams form

a basis of the algebra of symmetric functions A.



The Schur functions s, (x) parameterized by all diagrams form

a basis of the algebra of symmetric functions A.

The relation
sA\(X)su(x) =D ¢y, s.(x)

defines the Littlewood—Richardson coefficients cy,.



History:
D. E. Littlewood and A. R. Richardson (1934),
(general formulation, a proof in the case /(u) < 2),

G. de B. Robinson (1938), (proof contains gaps).



History:

D. E. Littlewood and A. R. Richardson (1934),
(general formulation, a proof in the case /(u) < 2),
G. de B. Robinson (1938), (proof contains gaps).
Complete proofs:

G. P. Thomas (1974 PhD thesis, 1978 paper),

M. P. Schutzenberger (1977).



History:

D. E. Littlewood and A. R. Richardson (1934),

(general formulation, a proof in the case /(i) < 2),

G. de B. Robinson (1938), (proof contains gaps).
Complete proofs:

G. P. Thomas (1974 PhD thesis, 1978 paper),

M. P. Schutzenberger (1977).

Now:

A couple of dozens of versions of the LR rule, ¢y, counts

tableaux, trees, hives, honeycombs, cartons, puzzles, ....
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Suppose that A, i, v are contained in n x m rectangle.

Write each partition in the binary code of length n+ m.

Example. The diagram A\ = (5,5, 3) inside 4 x 7 rectangle is

represented as follows:

A

— 00110010001




Write the sequences corresponding to A, i, v around the border

of an equilateral triangle of side length n+ m as indicated:
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Write the sequences corresponding to A, i, v around the border

of an equilateral triangle of side length n+ m as indicated:

VA

—_—
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Theorem [KTW'03]. The Littlewood—Richardson coefficient cy,
equals the number of triangular puzzles which can be obtained

with the use of the following set of unit puzzle pieces.



Puzzle pieces

0 1
AR ARV
0 1
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Take n = m = 2 so that




Example. Calculationof ¢y, A =(2), n

Take n = m = 2 so that

v — 1010
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Tiling model interpretation (P. Zinn-Justin, '08)
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A tableau version of the LR rule

Let R denote a sequence of diagrams

p — o means o is obtained from p by adding one box.



A tableau version of the LR rule

Let R denote a sequence of diagrams

o= p(O) N p(1) e p(/*1) N p(/) =,
p — o means o is obtained from p by adding one box.
Let r; denote the row number of the box added to p(—).

The sequence rq > ... r; is the Yamanouchi symbol of R.



Example. Let
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Example. Let

R:  (3,1)—(3,2)—(3,21)—(3,3,1) — (4,3,1)

or, with diagrams,

the Yamanouchi symbolis 2321.



The column word of a tableau T is the sequence of all entries
of T written in the column order: by reading the entries by
columns from left to right and from bottom to top in each

column.



The column word of a tableau T is the sequence of all entries
of T written in the column order: by reading the entries by
columns from left to right and from bottom to top in each

column.

Example. A reverse \-tableau for A = (5,5, 3):

N
w
N
-
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The column word of a tableau T is the sequence of all entries
of T written in the column order: by reading the entries by
columns from left to right and from bottom to top in each

column.

Example. A reverse \-tableau for A = (5,5, 3):

5/5/4]2]|2
413211
211]1

lts column word is 2451351241212,
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Let A and v be two diagrams.
A reverse \-tableau T is called v-bounded if the entries in the

top row do not exceed the respective column lengths of v:
T(1,1) <), T(1,2) < vh,

Such tableaux exist only if A C v.

H




Let A and v be two diagrams.

A reverse A\-tableau T is called v-bounded if the entries in the

top row do not exceed the respective column lengths of v:

T(1,1) < v,

Such tableaux exist only if A C v.

Maximal entries:

T(1,2) < v,

55144

1

.



Theorem. The Littlewood-Richardson coefficient ¢y, equals
the number of common elements in the two sets:
{column words of the v-bounded reverse A-tableaux} and

{ Yamanouchi symbols of the sequences from p to y}.



Theorem. The Littlewood-Richardson coefficient ¢y, equals
the number of common elements in the two sets:

{column words of the v-bounded reverse A-tableaux ¢ and

{ Yamanouchi symbols of the sequences from pu to y}

Remarks.

» This is a particular case of a more general theorem (see
below). It can be shown this is equivalent to the original

formulation of the Littlewood—Richardson rule.

» The theorem is equivalent to the puzzle rule (T. Tao).



Example. Calculation of Cry A=p= (2,1), vr=(3,2,1).



Example. Calculationof ¢y, A=pu=(2,1), v=(3,2,1).

Here vj = 3, v, = 2, v; = 1. The v-bounded \-tableaux are

3l2] [3]2] [3[1] [3][1] [2]2] [2]1]
2 1 2 1 1 1




Example. Calculationof ¢y, A=pu=(2,1), v=(3,2,1).

Here vj = 3, v, = 2, v; = 1. The v-bounded \-tableaux are

3

2]

3

2]

3

il

3

il

2

2]

2

il

2

1

2

The set of column words is

1

1

1

{232, 132, 231, 131, 122 121}.



The sequences from (2,1) to (3,2, 1):

2,1)—=@1)—=(3,2) = (321)
21)—=@1) =311 = (3,2,1)
(2.1) = (2,2) = (3,2) = (3,2,1)
(2,1) = (2,2) — (2,2,1) — (3,2,1)
(2,1) = (2,1,1) — (3,1,1) — (3,2,1)
(2,1) = (2,1,1) — (2,2,1) — (3,2,1)



The sequences from (2,1) to (3,2, 1):
,1) — (3,1

1) = (8,
1) — (2,2

2) —(3,2,1)
3,1,1) —(3,2,1)

)= @3,
1) —(
) —(3,2) = (3,2,1)
1) = (2,2) - (2,2,1) — (3,2,1)
1) = (2,1,1) — (38,1,1) — (3,2,1)
1) = (2,1,1) = (2,2,1) — (3,2,1)

The set of the Yamanouchi symbols is

{123, 132, 213 231, 312, 321}



The sequences from (2,1) to (3,2,1):
2,1)—(3,1) = (3,2) — (3,2,1)
1) —(3,1) — (3,1,1) — (3,2,1)
)
)

1) —(2,2) —

(3,
(
(3:2) = (3,2,1)
(

(
(2,
(2,
(2,1) = (2,2) — (2,2,1) — (3,2,1)

(2,1) — (2,1,1) — (3,1,1) = (3,2,1)
(2,1) —(2,1,1) — (2,2,1) — (3,2,1)

The set of the Yamanouchi symbols is
{123, 132, 213 231, 312, 321}.

Hence c|, = 2.
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Take A = (k) and consider a reverse tableau

’ﬁ\ fz\ '“\fk\

with the column word ry r» . .. r,. This column word can coincide
with the Yamanouchi symbol of a sequence R of diagrams from

1 1o v only if no two boxes were added in the same column.
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Pieri rules

Take A = (k) and consider a reverse tableau

’ﬁ\ fz\ '“\fk\

with the column word ry r» . .. r,. This column word can coincide
with the Yamanouchi symbol of a sequence R of diagrams from

1 1o v only if no two boxes were added in the same column.

Hence, cj), < 1. Similarly, ¢, < 1.

(1)



Corollary. We have

Pi(x) 8,(x) = 3 5,(x).

summed over diagrams v obtained from . by adding k boxes in

different columns.



Corollary. We have

Pi(x) 8,(x) = 3 5,(x).

summed over diagrams v obtained from . by adding k boxes in
different columns.

Moreover,
ex(X) su(x) = Y s, (x),
summed over diagrams v obtained from . by adding k boxes in

different rows.
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The elements of the algebra of symmetric functions A can be

viewed as sequences of symmetric polynomials:

oo
S
i=1

XK oxkexk o o xE e xk4+ XK



Double symmetric functions

The elements of the algebra of symmetric functions A can be

viewed as sequences of symmetric polynomials:

oo
S
i=1

XK oxkexk o o xE e xk4+ XK

The polynomials in such a sequence are compatible with the

evaluation homomorphisms

on: P(X1,...,Xp) — P(X1,...,Xp_1,0).



Let a= (a;), i € Z, be a sequence of variables.
Denote by A, the ring of symmetric polynomials in xq, ..., xp

with coefficients in Q[a].
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Let a= (a;), i € Z, be a sequence of variables.
Denote by A, the ring of symmetric polynomials in xq, ..., xp

with coefficients in Q[a].

Consider the sequences of symmetric polynomials compatible

with the evaluation homomorphisms
©n:Nn— Np_q, P(X1,...,%n) — P(X1,..., Xn_1,@n).

The ring A2 of double symmetric functions is formed by such
sequences of polynomials. The sequences can also be

regarded as formal series.



Examples. We have

n
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the double power sums symmetric function.
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the double power sums symmetric function.
A2 is the ring of polynomials in
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Examples. We have

hence

pe(xla) =) _(x/ —af) € A%,
=1

the double power sums symmetric function.
A2 is the ring of polynomials in

pi(x|la), pa(x]a),

with coefficients in Q[a]. Note that A® = A.



Double Schur functions

For any diagram X define the double Schur function by

sa(x|a) ZHXT — ar(a)—c(a)):

T aeX

summed over the reverse A\-tableaux T,

c(a) = j — i is the content of the box a = (1, j).



Double Schur functions

For any diagram X define the double Schur function by

sa(x|a) ZHXT — ar(a)—c(a)):

T aeX

summed over the reverse A-tableaux T,

c(a) = j — i is the content of the box a = (1, j).

The double Schur functions form a basis of A2 over Q[a].



Example. For A = (2, 1) the reverse tableaux are

ilil with i>j and i>k




Example. For A = (2, 1) the reverse tableaux are

ilil with i>j and i>k

Hence

sen(xla)= > (x—a)(X—a_)(X — ).

i>j, i>k



Set  hk(x]a) =su(xlla),  ex(x]a)=suk(x]a)
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Set  hk(x]a) =su(xlla),  ex(x]a)=suk(x]a)

Tableaux

LBl o[

Double complete and elementary symmetric functions:
he(x|a) = Z (Xi1 - 3/1) o (Xik - aik—k'H)?
iy 22l

ex(xla)= > (X —ay)-- (X — Gjerk—1)-
1> >l
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sx(xlla) su(x||a) = ZCA# su(x]a)-

Properties.

v
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Define the Littlewood—Richardson polynomials ¢y, (a) € Q[a] by

sa(x|a)su(x|a) =) ci.(a)s.(x] a).

v

Properties.

v

6, (2) £ 0 onlyit [v] < |\|+ |ul.

v

cy,(a) is homogeneous of degree |A[ + |u| — [v].
> ol (@)=cf, if [A+[ul=v or a=(0).

> c5.(a) = ¢cih(a)

v

cy(a)#0 onlyif XCv and pCv.



Calculation of ¢y (a)

Given a sequence R from p to v with the Yamanouchi symbol
ri rz ... n, introduce the set 7(\, R) of barred reverse
A-tableaux T with entries from {1,2,...} such that T contains

entries ry, o, ..., n listed in the column order.



Calculation of ¢y (a)

Given a sequence R from p to v with the Yamanouchi symbol
ri rz ... n, introduce the set 7(\, R) of barred reverse
A-tableaux T with entries from {1,2,...} such that T contains

entries ry, o, ..., n listed in the column order.

We will distinguish these entries by barring each of them.



Calculation of ¢y (a)

Given a sequence R from p to v with the Yamanouchi symbol
ri rz ... n, introduce the set 7(\, R) of barred reverse
A-tableaux T with entries from {1,2,...} such that T contains

entries ry, o, ..., n listed in the column order.
We will distinguish these entries by barring each of them.

Anelement T € T(\, R) is a pair consisting of a reverse

A-tableau and a sequence of barred entries compatible with R.



Example. Let R be the sequence

(3,1) —(8,2) —» (3,2,1) — (3,3,1) — (4,3,1)

so that the Yamanouchi symbolis 2321.



Example. Let R be the sequence

(3,1) —(8,2) —» (3,2,1) — (3,3,1) — (4,3,1)

so that the Yamanouchi symbolis 2321.

Let A = (5,5, 3). The barred A-tableau

4122
21
1

N

=

Nl
- | W

belongs to 7 (A, R).



Example. Let R be the sequence
(3,1) —(3,2) = (3,2,1) — (8,3,1) = (4,3, 1)

so that the Yamanouchi symbolis 2321.

Let A = (5,5, 3). The barred A-tableau

412
2111
1

N
\e}

NI &N
= | Wi

belongs to 7 (A, R).



Given a sequence of diagrams
R: p=p0 = p(M .o 0D 50 =y,

set p(a) = p{) for any box a occupied by an unbarred entry of

T, between r; and r;, ¢ in column order.



Given a sequence of diagrams

set p(a) = p{) for any box a occupied by an unbarred entry of

T, between r; and r;, ¢ in column order.

The barred entries 74, 7o, ..., 7, of T divide the tableau into

regions marked by the elements of the sequence R:

PO




Theorem (Kreiman & M. ’07, independently). We have

Cau(@) = ZH: XT: 11 (ar(a)—p(a)r(a, - aT(a)—c(a))v

aEX
T(«) unbarred

summed over all sequences R from  to v and all v-bounded

reverse A\-tableaux T € 7T (\, R).
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T(«) unbarred

summed over all sequences R from p to v and all v-bounded
reverse A-tableaux T € 7(A\, R). Moreover, in each factor
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Remarks.

» If |v| = |\ +|p| then thisis a version of the LR rule.



Theorem (Kreiman & M. ’07, independently). We have

Cau(@) = ZH: XT: 11 (ar(a)—p(a)r(a, —a T(a)—c(a))v

aEX
T(«) unbarred

summed over all sequences R from p to v and all v-bounded
reverse A-tableaux T € 7(A\, R). Moreover, in each factor
p(a)T(a) > C(Od).

Remarks.

» If |v| = |\ + |u| then thisis a version of the LR rule.
> ¢y, (a) is Graham-positive: it is a polynomial in the

differences a; — a;, i < j, with positive integer coefficients.



Example. Calculation of ¢y (a),

A=(2,1), p=(3,1), v=(41,1).



Example. Calculation of ¢y (a),

A=(2,1), p=(3,1), v=(41,1).

Here v{ =3, v, =1,v5 =1, v, = 1. The v-bounded \-tableaux

3|1 3|1 21
2 1 1




Example. Calculation of ¢y (a),

A=(2,1), p=(3,1), v=(411).

Here v{ =3, v, =1,v5 =1, v, = 1. The v-bounded \-tableaux

3|1 3|1 21
2 1 1

There are two sequences
Ry : (3,1) — (4,1) — (4,1,1) and
Rs : (3,1) — (3,1,1) — (4,1,1)

with the respective Yamanouchi symbols 13 and 31.



7 (A, Ry) contains one barred tableau

1 with T(a)=1, pla)=(41,1), o)

=

contributing aT(a)fp(a)T(a) ~ 8714 ¢(a) = 83 — -



7 (A, Ry) contains one barred tableau

il

=

with  T(a) =1,

p(a) = (47 1, 1)7 C(a)

contributing aT(a)fp(a)T(a) ~ 8714 ¢(a) = 83 — -

7T (X, Rz) contains two barred tableaux with contributions

1]

3
il

3_2 - 32,

1

N5

a1_33.



7 (A, Ry) contains one barred tableau

=

contributing aT(a)fp(a)T(a) ~ 8714 ¢(a) = 83 — -

7T (X, Rz) contains two barred tableaux with contributions

1‘ an,—a,,

1
a1_33.

3
il

N5

Hence cy (a)=a ;—a,+a ,—a+a —a;.

1 with T(a)=1, pla)=(41,1), ofa)=



Example. For the product of the double Schur functions

Si2)(x]la) and s(2 1)(x||a) we have

Si2)(x[la) s2,1)(x ] @)

= Su1)(x] @) + s@e)(x]a) + saq,1(x[a) + Sz21)(xlla)
+ (a1 — a) se11)(x[ @) + (a1 — @) Sz (x| a)
+ (a-1 —ax+ a2 —a) s3,1)(x] a)

+(a1—a) (a1 —a)sei(xla)



Example. For the product of the double Schur functions

Si2)(x]la) and s(2 1)(x||a) we have

Si2)(x[la) s2,1)(x ] @)

+ (a1 — a) se11)(x[ @) + (a-1 — @) Sz (x| a)
+ (a-1 —ax+ a2 — a) S3,1)(x] a)

+(a1—-a) (a1 —a)sei(xla)



Example. For the product of the double Schur functions

Si2)(x]la) and s(2 1)(x||a) we have

Si2)(x[la) s2,1)(x ] @)

= Su1)(x] @) + s@e)(x]a) + saq,1(x[a) + Sz21)(xlla)
+ (a1 —a) se1n(xla) + (a1 — a) Sz (x] a)
+ (a1 —a+a—a) s3,1)(x]a)

+(a1-a) (a1 a)se(xla)



Example. For any diagram A,



Example. For any diagram A,
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Setting a; = —i for all i gives the product of the hooks of \.



Example. For any diagram A,

ch(a) = H (@_y — a)\j’.fj+1)‘
(i, J)EX

Setting a; = —i for all i gives the product of the hooks of \.

Proof of the theorem. Calculate ¢y, (a) by induction on |v| — |u].



Example. For any diagram A,

en@= 11 (@ —ay )
(i,))er

Setting a; = —i for all i gives the product of the hooks of \.

Proof of the theorem. Calculate ¢y, (a) by induction on |v| — |u].

Starting point: the Vanishing Theorem (A. Okounkov, '96):
sx(apla)=0 unless A C p,

where

a, = (a1—p,, @—pps ---).



Hence, if R = {1} is a one-term sequence, then

C)/f/j,(a) = SA(a/L”a)7 a,U« = (a1*,LL17 327u23 ctt )7



Hence, if R = {1} is a one-term sequence, then

C)/f/j,(a) = SA(a/L”a)7 a,U« = (a1*,LL17 327u23 ctt )7

and so

c(a) = ET: H (aT(a)fuT(a) — aT(a)—c(a) )

aEA



Hence, if R = {1} is a one-term sequence, then

C)/f/j,(a) = SA(aH”a)7 a,U« = (a1*,LL17 327u23 ctt )7

and so

ciu(a ZH (ar(a> Mo ar(a),c(a)).

aE

Then use the recurrence

C)I\/,u(a) |al/‘ . ’au| ( Z C)\;fr(a Z V (a)>7

p—put v —v

where |a,| — |a,| = X5 ((ay),- - (au)/) (M. & Sagan, '99).
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Write the binary sequences corresponding to A, i, v around the

border of an equilateral triangle:
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Write the binary sequences corresponding to A, i, v around the

border of an equilateral triangle:
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Knutson—Tao puzzles

Write the binary sequences corresponding to A, i, v around the

border of an equilateral triangle:

VA

B

14

Theorem [KT '03]. The Littlewood—Richardson polynomial
cy,(a) equals the sum of weights of triangular puzzles, where

an additional puzzle piece can be used.



Additional puzzle piece



Additional puzzle piece

Each occurrence of this puzzle piece contributes a factor by the

rule:




Dimensions of skew diagrams

Let © C X be two diagrams. The skew diagram 6 = \/u is the

set-theoretical difference of the diagrams A\ and p:



Dimensions of skew diagrams

Let © C X be two diagrams. The skew diagram 6 = \/u is the

set-theoretical difference of the diagrams A\ and p:

Example. A =(10,8,5,4,2) and i = (6, 3):

- [ ]

0=/




If & has n = |0| boxes, then a standard #-tableau is obtained by
filling the boxes bijectively with the numbers {1,2,...,n} in

such a way that the entries increase along the rows and down

the columns.



If & has n = |6| boxes, then a standard #-tableau is obtained by
filling the boxes bijectively with the numbers {1,2,...,n} in
such a way that the entries increase along the rows and down

the columns.

The dimension dim @ of a skew diagram 6 is the number of the

standard 6-tableaux.



If & has n = |6| boxes, then a standard #-tableau is obtained by
filling the boxes bijectively with the numbers {1,2,...,n} in
such a way that the entries increase along the rows and down

the columns.

The dimension dim @ of a skew diagram 6 is the number of the

standard 6-tableaux.

Set
_ o
%= dimo-




If 6 is normal (nonskew), then Hj, coincides with the product of

the hooks of 6 due to the hook formula.



If 6 is normal (nonskew), then Hj, coincides with the product of

the hooks of 6 due to the hook formula.

Example. The hooks of 6 = (4,3, 1):

4]3]1]
2| 1

’—k-hCD




If 6 is normal (nonskew), then Hj, coincides with the product of

the hooks of 6 due to the hook formula.

Example. The hooks of 6 = (4,3, 1):

4

3

1]

2

1

’—k-hCD

Hence Hy;=6-42.3.2.13 =576

and dim@ = 70.



If 6 is normal (nonskew), then Hj, coincides with the product of

the hooks of 6 due to the hook formula.

Example. The hooks of 6 = (4,3, 1):

4]3]1]
2| 1

’—k-hCD

Hence Hy=6-42.3.2.13=576 and dim# = 70.

f6=6;U---U6, then H9:H91...H9.

r



Example. Let § = (3,2)/(1). The standard ¢-tableaux are

1] 2] 1] 3] 1] 4] 2|3] 2

13]4 (24 2|3 11]4 11]3




Example. Let § = (3,2)/(1). The standard ¢-tableaux are

1] 2] 1] 3] 1] 4] 2|3] 2

13]4 (24 2|3 11]4 11]3

Hence dimé =5 and Hy=24/5.



Example. Let § = (3,2)/(1). The standard ¢-tableaux are

1] 2] 1] 3] 1] 4] 2|3] 2] 4
13]4 2]4 2|3 (1]4 1]3

Hence dimé =5 and Hy=24/5.

Corollary. We have
H
o, = (~n)wel_— 2
g Zp: Hl//p Hp/A Hp/u
summed over the diagrams p which contain both \ and 1, and

are contained in v.



Example. Let A =p = (2,1), v=(3,2,1).



Example. Let A =p = (2,1), v=(3,2,1).

Then p runs over the set of diagrams

{1, 31, (22),21.1). 32 31,1), 221), (321}



Example. Let A =p = (2,1), v=(3,2,1).

Then p runs over the set of diagrams

{1, 31, (22),21.1). 32 31,1), 221), (321}

Here H,,, = H,)» = H,,, = 1 for all p.



Example. Let A =p = (2,1), v=(3,2,1).

Then p runs over the set of diagrams

{(2,1), (3,1), (2,2), (2,1,1), (3,2), (3,1,1), (2,2,1), (3,2,1)}.
Here H,,, = H,)» = H,,, = 1 for all p.

Hence

3,2,1) _



Quantum immanants (Okounkov, '96)

Consider the Lie algebra gl,, with its standard basis {E s},

where a,b € {1,...,n}.



Quantum immanants (Okounkov, '96)

Consider the Lie algebra gl,, with its standard basis {E s},

where a,b € {1,...,n}.

Given a diagram \ with ¢(\) < n, the quantum immanant S is
an element of the center of the universal enveloping algebra

U(gl,). The S, can be given by various explicit formulas.



Examples. Quantum minors (Capelli elements)

S(1k) = Z Z sgnp - Eahap“) e (E + kK — 1)ak7ap(k)-

a<--<ak peSy



Examples. Quantum minors (Capelli elements)

Z Z sgnp - Ea1,ap(1) . (E+k-— 1)akvap(k)'

a1<--<akx peBg

Quantum permanents

Siw= >, ———— Z Eaayy - (E =K+ 1)acay,
ka1 pES;
where «; is the multiplicity of i in ay, ..., ak, each

are{1,...,n}



The quantum immanants S, with ¢(\) < nform a basis of the

center of the universal enveloping algebra U(gl,,).



The quantum immanants S, with ¢(\) < nform a basis of the

center of the universal enveloping algebra U(gl,,).

Define the coefficients £\, by the expansion
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The quantum immanants S, with ¢(\) < nform a basis of the

center of the universal enveloping algebra U(gl,,).

Define the coefficients £\, by the expansion

SASu=>_f,S,.

Corollary. f» = ¢y (a) for the specialization a; = —i fori € Z.
A AL



The coefficient f{ is zero unless A, C v. If A, n C v then

Fo=2> II (s — @),
R T

aEX
T(a) unbarred

summed over all sequences R from p to v and all v-bounded
reverse A-tableaux T € 7 (A, R). In particular, the £}, are

nonnegative integers.



Example. For any n > 3 we have

S2)S(2,1) =S4,1) +S@3,2) +53,1,1) TS2,2,1)

+ 8(27171) +5 8(371) +3 8(2’2) +3 S(271).



Example. For any n > 3 we have

S2)S(2,1) =S4,1) +S@3,2) +53,1,1) TS2,2,1)

+ 8(27171) +5 8(371) +3 8(2’2) +3 S(271).

If n=2 then

8(2)8(271) = S(471) + 8(372) +5 8(371) +3 8(272) + 3 S(2’1).



Equivariant Schubert calculus
on the Grassmannian

The torus T = (C*)N acts naturally on Gr, 5. The equivariant

cohomology ring H7(Gr, n) is a module over

Zlt,... ty] = Hi({pt}).



Equivariant Schubert calculus
on the Grassmannian

The torus T = (C*)N acts naturally on Gr, 5. The equivariant

cohomology ring H7(Gr, n) is a module over

Zlt,... ty] = Hi({pt}).

It has a basis of the equivariant Schubert classes o),
parameterized by all diagrams A contained in the n x m

rectangle, m= N — n.



Corollary. We have

_ 14
oNO, = E ax, o,
v

where dy;, = ¢y (a) with the sequence a specialized as
follows:

a_m+1:—t1, e an:—tN,

and a; = 0 for all remaining values of i.



Corollary. We have

— v
oNO, = E ax, o,
v

where dy;, = ¢y (a) with the sequence a specialized as
follows:

a_m+1:—t1, ey an:—tN,
and a; = 0 for all remaining values of /.

The dA”M are polynomials in the f; — t;, i > j with positive integer

coefficients (the positivity property, Graham ’01).



The coefficients d;’u, regarded as polynomials in the a;, are
independent of nand m, as soon as the inequalities

n> N, + pf and m > Ay + uq hold (the stability property).
1 1



The coefficients d;’u, regarded as polynomials in the a;, are
independent of nand m, as soon as the inequalities

n> N, + 4 and m > Ay + p4 hold (the stability property).

Remark. The puzzle rule of Knutson and Tao (2003) gives a
manifestly positive formula for the d/, while the tableau rule is

manifestly stable.



Example. Forany n > 3 and m > 4 we have

0(2)0(2,1) = 0(4,1) T 0(32) T 0(3,1,1) T 0(2,2,1)
+ (tm — tm—1) 02,1,1) + (Im2 — tm—1) 02,2
+ (tmy2 — tm—1 + tm — tm—2) 0(3,1)

+ (tms2 = tm—1) (tm — tm—1) 0(2,1)-



