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A diagram (or partition) is a sequence λ = (λ1, . . . , λn) of

integers λi such that λ1 > · · · > λn > 0, depicted as an array of

unit boxes.

Example. The diagram λ = (5, 5, 3) is

The number of boxes is the weight of the diagram, denoted |λ|.

The number of nonzero rows is its length, denoted `(λ).
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A diagram (or partition) is a sequence λ = (λ1, . . . , λn) of

integers λi such that λ1 > · · · > λn > 0, depicted as an array of

unit boxes.

Example. The diagram λ = (5, 5, 3) is

|λ| = 13 `(λ) = 3

The number of boxes is the weight of the diagram, denoted |λ|.

The number of nonzero rows is its length, denoted `(λ).



Littlewood–Richardson coefficients c ν
λµ

Let `(λ) 6 n and let V λ denote the irreducible gln-module

with the highest weight λ.

Then

V λ ⊗ V µ ∼= L
ν

c ν
λµ V ν .

Here `(λ), `(µ), `(ν) 6 n.
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Let |λ| = k and let χλ denote the corresponding

irreducible character of the symmetric group Sk .

Then

Ind Sk+l
Sk×Sl

(
χλ × χµ

)
=
∑

ν

c ν
λµ χν .

Here |λ| = k , |µ| = l , |ν| = k + l .

In particular,

c ν
λµ 6= 0 =⇒ |ν| = |λ|+ |µ|.
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Let n and N be nonnegative integers with n 6 N and let Grn,N

denote the Grassmannian of the n-dimensional vector

subspaces of CN . The cohomology ring H∗(Grn,N) has a basis

of the Schubert classes σλ parameterized by all diagrams λ

contained in the n ×m rectangle, m = N − n.

We have

σλ σµ =
∑

ν

c ν
λµ σν .

Here λ, µ, ν are contained in the n ×m rectangle.
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Let x = (x1, x2, . . . ) be an infinite set of variables.

Given any partition λ = (λ1, . . . , λn), define the corresponding

monomial symmetric function by

mλ(x) =
∑

σ

xλ1
σ(1)x

λ2
σ(2) . . . xλn

σ(n),

summed over permutations σ of the xi which give distinct

monomials.

The algebra of symmetric functions Λ is defined as the Q-span

of all monomial symmetric functions.
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Examples: power sums symmetric functions

pk (x) = m(k)(x) =
∞∑

i=1

x k
i ,

elementary symmetric functions

ek (x) = m(1k )(x) =
∑

i1>···>ik >1

xi1 . . . xik ,

complete symmetric functions

hk (x) =
∑
|λ|=k

mλ(x) =
∑

i1>···>ik >1

xi1 . . . xik .
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Schur functions

Given a diagram λ, a reverse λ-tableau T is obtained by filling

in the boxes of λ with the numbers 1, 2, . . . in such a way that

the entries weakly decrease along the rows and strictly

decrease down the columns. If α = (i , j) is a box of λ we let

T (α) = T (i , j) denote the entry of T in the box α.

Example. A reverse λ-tableau for λ = (5, 5, 3):

2
4
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1
3
5

1
2
4

1
2

1
2
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The Schur function sλ(x) corresponding to λ is defined by

sλ(x) =
∑

T

∏
α∈λ

xT (α),

summed over the reverse λ-tableaux T .

Example. For λ = (2, 1) the reverse tableaux are

k
i j with i > j and i > k .

Hence

s(2,1)(x) =
∑

i>j, i>k

xi xj xk .
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The Schur functions sλ(x) parameterized by all diagrams form

a basis of the algebra of symmetric functions Λ.

The relation

sλ(x) sµ(x) =
∑
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c ν
λµ sν(x)

defines the Littlewood–Richardson coefficients c ν
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History:

D. E. Littlewood and A. R. Richardson (1934),

(general formulation, a proof in the case `(µ) 6 2),

G. de B. Robinson (1938), (proof contains gaps).

Complete proofs:

G. P. Thomas (1974 PhD thesis, 1978 paper),

M. P. Schützenberger (1977).

Now:

A couple of dozens of versions of the LR rule, c ν
λµ counts

tableaux, trees, hives, honeycombs, cartons, puzzles, . . . .
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Knutson–Tao–Woodward puzzles

Suppose that λ, µ, ν are contained in n ×m rectangle.

Write each partition in the binary code of length n + m.

Example. The diagram λ = (5, 5, 3) inside 4× 7 rectangle is

represented as follows:

�

−→ 0 0 1 1 0 0 1 0 0 0 1
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Write the sequences corresponding to λ, µ, ν around the border

of an equilateral triangle of side length n + m as indicated:
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JĴ

µ

-
ν

Theorem [KTW ’03]. The Littlewood–Richardson coefficient c ν
λµ

equals the number of triangular puzzles which can be obtained

with the use of the following set of unit puzzle pieces.
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JĴ

µ

-
ν

Theorem [KTW ’03]. The Littlewood–Richardson coefficient c ν
λµ

equals the number of triangular puzzles which can be obtained

with the use of the following set of unit puzzle pieces.



Puzzle pieces









J

J
J
J

0 0

0

J
J

J
J









0 0

0









J

J
J
J

1 1

1

J
J

J
J









1 1

1









J

J
J
J

J
J

J
J











1 0

0 1




















0

1

0

1

J
J

J
J

J
J

J
J

1

0

1

0



Example. Calculation of c ν
λµ, λ = (2), µ = (1), ν = (2, 1).

Take n = m = 2 so that

λ −→ 1 0 0 1

µ −→ 0 1 0 1

ν −→ 1 0 1 0
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Tiling model interpretation (P. Zinn-Justin, ’08)
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A tableau version of the LR rule

Let R denote a sequence of diagrams

µ = ρ(0) → ρ(1) → · · · → ρ(l−1) → ρ(l) = ν,

ρ → σ means σ is obtained from ρ by adding one box.

Let ri denote the row number of the box added to ρ(i−1).

The sequence r1 r2 . . . rl is the Yamanouchi symbol of R.
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∗

→ ∗ → ∗

the Yamanouchi symbol is 2 3 2 1.



Example. Let

R : (3, 1) → (3, 2) → (3, 2, 1) → (3, 3, 1) → (4, 3, 1)

or, with diagrams,

→ ∗ →
∗

→ ∗ → ∗

the Yamanouchi symbol is 2 3 2 1.



Example. Let

R : (3, 1) → (3, 2) → (3, 2, 1) → (3, 3, 1) → (4, 3, 1)

or, with diagrams,

→ ∗ →
∗

→ ∗ → ∗

the Yamanouchi symbol is 2 3 2 1.



The column word of a tableau T is the sequence of all entries

of T written in the column order: by reading the entries by

columns from left to right and from bottom to top in each

column.
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Let λ and ν be two diagrams.

A reverse λ-tableau T is called ν-bounded if the entries in the

top row do not exceed the respective column lengths of ν:

T (1, 1) 6 ν ′1, T (1, 2) 6 ν ′2, . . ..

Such tableaux exist only if λ ⊆ ν.
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Theorem. The Littlewood–Richardson coefficient c ν
λµ equals

the number of common elements in the two sets:{
column words of the ν-bounded reverse λ-tableaux

}
and{

Yamanouchi symbols of the sequences from µ to ν
}

.

Remarks.

I This is a particular case of a more general theorem (see

below). It can be shown this is equivalent to the original

formulation of the Littlewood–Richardson rule.

I The theorem is equivalent to the puzzle rule (T. Tao).
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Example. Calculation of c ν
λµ, λ = µ = (2, 1), ν = (3, 2, 1).

Here ν ′1 = 3, ν ′2 = 2, ν ′3 = 1. The ν-bounded λ-tableaux are
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}
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The sequences from (2, 1) to (3, 2, 1):

(2, 1) → (3, 1) → (3, 2) → (3, 2, 1)

(2, 1) → (3, 1) → (3, 1, 1) → (3, 2, 1)
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Pieri rules

Take λ = (k) and consider a reverse tableau

r1 r2 · · · rk

with the column word r1 r2 . . . rk . This column word can coincide

with the Yamanouchi symbol of a sequence R of diagrams from

µ to ν only if no two boxes were added in the same column.

Hence, c ν
(k)µ 6 1. Similarly, c ν

(1k )µ
6 1.
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Corollary. We have

hk (x) sµ(x) =
∑

ν

sν(x),

summed over diagrams ν obtained from µ by adding k boxes in

different columns.

Moreover,

ek (x) sµ(x) =
∑

ν

sν(x),

summed over diagrams ν obtained from µ by adding k boxes in

different rows.
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Double symmetric functions

The elements of the algebra of symmetric functions Λ can be

viewed as sequences of symmetric polynomials:
∞∑

i=1

xk
i −→

xk
1 , xk

1 + xk
2 , . . . , xk

1 + xk
2 + · · ·+ xk

n , . . .

The polynomials in such a sequence are compatible with the

evaluation homomorphisms

ϕn : P(x1, . . . , xn) 7→ P(x1, . . . , xn−1, 0).
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Let a = (ai), i ∈ Z , be a sequence of variables.

Denote by Λn the ring of symmetric polynomials in x1, . . . , xn

with coefficients in Q [a].

Consider the sequences of symmetric polynomials compatible

with the evaluation homomorphisms

ϕn : Λn → Λn−1, P(x1, . . . , xn) 7→ P(x1, . . . , xn−1, an).

The ring Λa of double symmetric functions is formed by such

sequences of polynomials. The sequences can also be

regarded as formal series.
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Examples. We have

ϕn :
n∑

i=1

(x k
i − a k

i ) 7→
n−1∑
i=1

(x k
i − a k

i )

hence

pk (x ||a) =
∞∑

i=1

(x k
i − a k

i ) ∈ Λa,

the double power sums symmetric function.

Λa is the ring of polynomials in

p1(x ||a), p2(x ||a), . . . .

with coefficients in Q [a]. Note that Λ0 = Λ.
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Double Schur functions

For any diagram λ define the double Schur function by

sλ(x ||a) =
∑

T

∏
α∈λ

(xT (α) − aT (α)−c(α)),

summed over the reverse λ-tableaux T ,

c(α) = j − i is the content of the box α = (i , j).

The double Schur functions form a basis of Λa over Q [a].
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Example. For λ = (2, 1) the reverse tableaux are

k
i j with i > j and i > k

Hence

s(2,1)(x ||a) =
∑

i>j, i>k

(xi − ai)(xj − aj−1)(xk − ak+1).
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Define the Littlewood–Richardson polynomials c ν
λµ(a) ∈ Q [a] by

sλ(x ||a) sµ(x ||a) =
∑

ν

c ν
λµ(a) sν(x ||a).

Properties.

I c ν
λµ(a) 6= 0 only if |ν| 6 |λ|+ |µ|.

I c ν
λµ(a) is homogeneous of degree |λ|+ |µ| − |ν|.

I c ν
λµ(a) = c ν

λµ if |λ|+ |µ| = |ν| or a = (0).

I c ν
λµ(a) = c ν

µλ(a).

I c ν
λµ(a) 6= 0 only if λ ⊆ ν and µ ⊆ ν.
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Calculation of c ν
λµ(a)

Given a sequence R from µ to ν with the Yamanouchi symbol

r1 r2 . . . rl , introduce the set T (λ, R) of barred reverse

λ-tableaux T with entries from {1, 2, . . . } such that T contains

entries r1, r2, . . . , rl listed in the column order.

We will distinguish these entries by barring each of them.

An element T ∈ T (λ, R) is a pair consisting of a reverse

λ-tableau and a sequence of barred entries compatible with R.
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Example. Let R be the sequence

(3, 1) → (3, 2) → (3, 2, 1) → (3, 3, 1) → (4, 3, 1)

so that the Yamanouchi symbol is 2 3 2 1.

Let λ = (5, 5, 3). The barred λ-tableau

2
4
7

1
3
7

1
2
4

1
2

1
2

belongs to T (λ, R).
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Given a sequence of diagrams

R : µ = ρ(0) → ρ(1) → · · · → ρ(l−1) → ρ(l) = ν,

set ρ(α) = ρ(i) for any box α occupied by an unbarred entry of

T , between r i and r i+1 in column order.

The barred entries r1, r2, . . . , r l of T divide the tableau into

regions marked by the elements of the sequence R :

ρ(0) ρ(1)

r1 r2

r l

ρ(l)

· · ·
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Theorem (Kreiman & M. ’07, independently). We have

c ν
λµ(a) =

∑
R

∑
T

∏
α∈λ

T (α) unbarred

(
aT (α)−ρ(α)T (α)

− aT (α)−c(α)

)
,

summed over all sequences R from µ to ν and all ν-bounded

reverse λ-tableaux T ∈ T (λ, R).

Moreover, in each factor

ρ(α)T (α) > c(α).

Remarks.

I If |ν| = |λ|+ |µ| then this is a version of the LR rule.

I c ν
λµ(a) is Graham-positive: it is a polynomial in the

differences ai − aj , i < j , with positive integer coefficients.



Theorem (Kreiman & M. ’07, independently). We have

c ν
λµ(a) =

∑
R

∑
T

∏
α∈λ

T (α) unbarred

(
aT (α)−ρ(α)T (α)

− aT (α)−c(α)

)
,

summed over all sequences R from µ to ν and all ν-bounded

reverse λ-tableaux T ∈ T (λ, R). Moreover, in each factor

ρ(α)T (α) > c(α).

Remarks.

I If |ν| = |λ|+ |µ| then this is a version of the LR rule.

I c ν
λµ(a) is Graham-positive: it is a polynomial in the

differences ai − aj , i < j , with positive integer coefficients.



Theorem (Kreiman & M. ’07, independently). We have

c ν
λµ(a) =

∑
R

∑
T

∏
α∈λ

T (α) unbarred

(
aT (α)−ρ(α)T (α)

− aT (α)−c(α)

)
,

summed over all sequences R from µ to ν and all ν-bounded

reverse λ-tableaux T ∈ T (λ, R). Moreover, in each factor

ρ(α)T (α) > c(α).

Remarks.

I If |ν| = |λ|+ |µ| then this is a version of the LR rule.

I c ν
λµ(a) is Graham-positive: it is a polynomial in the

differences ai − aj , i < j , with positive integer coefficients.



Theorem (Kreiman & M. ’07, independently). We have

c ν
λµ(a) =

∑
R

∑
T

∏
α∈λ

T (α) unbarred

(
aT (α)−ρ(α)T (α)

− aT (α)−c(α)

)
,

summed over all sequences R from µ to ν and all ν-bounded

reverse λ-tableaux T ∈ T (λ, R). Moreover, in each factor

ρ(α)T (α) > c(α).

Remarks.

I If |ν| = |λ|+ |µ| then this is a version of the LR rule.

I c ν
λµ(a) is Graham-positive: it is a polynomial in the

differences ai − aj , i < j , with positive integer coefficients.



Example. Calculation of c ν
λµ(a),

λ = (2, 1), µ = (3, 1), ν = (4, 1, 1).

Here ν ′1 = 3, ν ′2 = 1, ν ′3 = 1, ν ′4 = 1. The ν-bounded λ-tableaux

2
3 1

1
3 1

1
2 1

There are two sequences

R1 : (3, 1) → (4, 1) → (4, 1, 1) and

R2 : (3, 1) → (3, 1, 1) → (4, 1, 1)

with the respective Yamanouchi symbols 1 3 and 3 1.
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T (λ, R1) contains one barred tableau

1
3 1 with T (α) = 1, ρ(α) = (4, 1, 1), c(α) = 1,

contributing aT (α)−ρ(α)T (α)
− aT (α)−c(α) = a−3 − a0.

T (λ, R2) contains two barred tableaux with contributions

1
3 1 a−2 − a2 ,

2
3 1 a1 − a3 .

Hence c ν
λµ(a) = a−3 − a0 + a−2 − a2 + a1 − a3.
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Example. For the product of the double Schur functions

s(2)(x ||a) and s(2,1)(x ||a) we have

s(2)(x ||a) s(2,1)(x ||a)

= s(4,1)(x ||a) + s(3,2)(x ||a) + s(3,1,1)(x ||a) + s(2,2,1)(x ||a)

+
(
a−1 − a0

)
s(2,1,1)(x ||a) +

(
a−1 − a2

)
s(2,2)(x ||a)

+
(
a−1 − a2 + a−2 − a0

)
s(3,1)(x ||a)

+
(
a−1 − a2

) (
a−1 − a0

)
s(2,1)(x ||a).



Example. For the product of the double Schur functions

s(2)(x ||a) and s(2,1)(x ||a) we have

s(2)(x ||a) s(2,1)(x ||a)

= s(4,1)(x ||a) + s(3,2)(x ||a) + s(3,1,1)(x ||a) + s(2,2,1)(x ||a)

+
(
a−1 − a0

)
s(2,1,1)(x ||a) +

(
a−1 − a2

)
s(2,2)(x ||a)

+
(
a−1 − a2 + a−2 − a0

)
s(3,1)(x ||a)

+
(
a−1 − a2

) (
a−1 − a0

)
s(2,1)(x ||a).



Example. For the product of the double Schur functions

s(2)(x ||a) and s(2,1)(x ||a) we have

s(2)(x ||a) s(2,1)(x ||a)

= s(4,1)(x ||a) + s(3,2)(x ||a) + s(3,1,1)(x ||a) + s(2,2,1)(x ||a)

+
(
a−1 − a0

)
s(2,1,1)(x ||a) +

(
a−1 − a2

)
s(2,2)(x ||a)

+
(
a−1 − a2 + a−2 − a0

)
s(3,1)(x ||a)

+
(
a−1 − a2

) (
a−1 − a0

)
s(2,1)(x ||a).
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(
ai−λi

− aλ′j−j+1
)
.

Setting ai = −i for all i gives the product of the hooks of λ.

Proof of the theorem. Calculate c ν
λµ(a) by induction on |ν| − |µ|.

Starting point: the Vanishing Theorem (A. Okounkov, ’96):

sλ(aρ ||a) = 0 unless λ ⊆ ρ,

where

aρ = (a1−ρ1 , a2−ρ2 , . . . ).
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)
(M. & Sagan, ’99).
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Knutson–Tao puzzles

Write the binary sequences corresponding to λ, µ, ν around the

border of an equilateral triangle:











J

J
J

J
J
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µ

-
ν

Theorem [KT ’03]. The Littlewood–Richardson polynomial

c ν
λµ(a) equals the sum of weights of triangular puzzles, where

an additional puzzle piece can be used.
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Dimensions of skew diagrams

Let µ ⊆ λ be two diagrams. The skew diagram θ = λ/µ is the

set-theoretical difference of the diagrams λ and µ:

Example. λ = (10, 8, 5, 4, 2) and µ = (6, 3):

θ = λ/µ
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If θ has n = |θ| boxes, then a standard θ-tableau is obtained by

filling the boxes bijectively with the numbers {1, 2, . . . , n} in

such a way that the entries increase along the rows and down

the columns.

The dimension dim θ of a skew diagram θ is the number of the

standard θ-tableaux.

Set

Hθ =
|θ|!

dim θ
.
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If θ is normal (nonskew), then Hθ coincides with the product of

the hooks of θ due to the hook formula.

Example. The hooks of θ = (4, 3, 1):

1
4
6

2
4

1
3 1

Hence Hθ = 6 · 42 · 3 · 2 · 13 = 576 and dim θ = 70.

If θ = θ1 t · · · t θr , then Hθ = Hθ1 . . . Hθr .
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Hence Hθ = 6 · 42 · 3 · 2 · 13 = 576 and dim θ = 70.

If θ = θ1 t · · · t θr , then Hθ = Hθ1 . . . Hθr .



Example. Let θ = (3, 2)/(1). The standard θ-tableaux are

3 4
1 2

2 4
1 3

2 3
1 4

1 4
2 3

1 3
2 4

Hence dim θ = 5 and Hθ = 24/5.

Corollary. We have

cν
λµ =

∑
ρ

(−1)|ν/ρ| Hρ

Hν/ρ Hρ/λ Hρ/µ
,

summed over the diagrams ρ which contain both λ and µ, and

are contained in ν.
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Example. Let λ = µ = (2, 1), ν = (3, 2, 1).

Then ρ runs over the set of diagrams

{
(2, 1), (3, 1), (2, 2), (2, 1, 1), (3, 2), (3, 1, 1), (2, 2, 1), (3, 2, 1)

}
.

Here Hν/ρ = Hρ/λ = Hρ/µ = 1 for all ρ.

Hence

c(3,2,1)
(2,1)(2,1) = −3 + 8 + 12 + 8− 24− 20− 24 + 45 = 2.
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Quantum immanants (Okounkov, ’96)

Consider the Lie algebra gln with its standard basis {Eab},

where a, b ∈ {1, . . . , n}.

Given a diagram λ with `(λ) 6 n, the quantum immanant Sλ is

an element of the center of the universal enveloping algebra

U(gln). The Sλ can be given by various explicit formulas.
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Examples. Quantum minors (Capelli elements)

S (1k ) =
∑

a1<···<ak

∑
p∈Sk

sgn p · Ea1,ap(1)
. . . (E + k − 1)ak ,ap(k)

.

Quantum permanents

S (k) =
∑

a16···6ak

1
α1! . . . αn!

∑
p∈Sk

Ea1,ap(1)
. . . (E − k + 1)ak ,ap(k)

,

where αi is the multiplicity of i in a1, . . . , ak , each

ar ∈ {1, . . . , n}.



Examples. Quantum minors (Capelli elements)

S (1k ) =
∑

a1<···<ak

∑
p∈Sk

sgn p · Ea1,ap(1)
. . . (E + k − 1)ak ,ap(k)

.

Quantum permanents

S (k) =
∑

a16···6ak

1
α1! . . . αn!

∑
p∈Sk

Ea1,ap(1)
. . . (E − k + 1)ak ,ap(k)

,

where αi is the multiplicity of i in a1, . . . , ak , each

ar ∈ {1, . . . , n}.



The quantum immanants Sλ with `(λ) 6 n form a basis of the

center of the universal enveloping algebra U(gln).

Define the coefficients f ν
λµ by the expansion

Sλ Sµ =
∑

ν

f ν
λµ Sν .

Corollary. f ν
λµ = c ν

λµ(a) for the specialization ai = −i for i ∈ Z .
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λµ by the expansion

Sλ Sµ =
∑

ν

f ν
λµ Sν .

Corollary. f ν
λµ = c ν

λµ(a) for the specialization ai = −i for i ∈ Z .



The coefficient f ν
λµ is zero unless λ, µ ⊆ ν. If λ, µ ⊆ ν then

f ν
λµ =

∑
R

∑
T

∏
α∈λ

T (α) unbarred

(
ρ(α)T (α) − c(α)

)
,

summed over all sequences R from µ to ν and all ν-bounded

reverse λ-tableaux T ∈ T (λ, R). In particular, the f ν
λµ are

nonnegative integers.



Example. For any n > 3 we have

S (2) S (2,1) = S (4,1) + S (3,2) + S (3,1,1) + S (2,2,1)

+ S (2,1,1) + 5 S (3,1) + 3 S (2,2) + 3 S (2,1).

If n = 2 then

S (2) S (2,1) = S (4,1) + S (3,2) + 5 S (3,1) + 3 S (2,2) + 3 S (2,1).
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Equivariant Schubert calculus
on the Grassmannian

The torus T = (C∗)N acts naturally on Grn,N . The equivariant

cohomology ring H∗
T (Grn,N) is a module over

Z [t1, . . . , tN ] = H∗
T ({pt}).

It has a basis of the equivariant Schubert classes σλ

parameterized by all diagrams λ contained in the n ×m

rectangle, m = N − n.
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Corollary. We have

σλ σµ =
∑

ν

d ν
λµ σν ,

where d ν
λµ = c ν

λµ(a) with the sequence a specialized as

follows:

a−m+1 = −t1, . . . , an = −tN ,

and ai = 0 for all remaining values of i .

The d ν
λµ are polynomials in the ti − tj , i > j with positive integer

coefficients (the positivity property, Graham ’01).
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The coefficients d ν
λµ, regarded as polynomials in the ai , are

independent of n and m, as soon as the inequalities

n > λ′1 + µ′1 and m > λ1 + µ1 hold (the stability property).

Remark. The puzzle rule of Knutson and Tao (2003) gives a

manifestly positive formula for the d ν
λµ while the tableau rule is

manifestly stable.



The coefficients d ν
λµ, regarded as polynomials in the ai , are

independent of n and m, as soon as the inequalities

n > λ′1 + µ′1 and m > λ1 + µ1 hold (the stability property).

Remark. The puzzle rule of Knutson and Tao (2003) gives a

manifestly positive formula for the d ν
λµ while the tableau rule is

manifestly stable.



Example. For any n > 3 and m > 4 we have

σ(2) σ(2,1) = σ(4,1) + σ(3,2) + σ(3,1,1) + σ(2,2,1)

+ (tm − tm−1) σ(2,1,1) + (tm+2 − tm−1) σ(2,2)

+ (tm+2 − tm−1 + tm − tm−2) σ(3,1)

+ (tm+2 − tm−1) (tm − tm−1) σ(2,1).


