Cauchy identity for double Schur functions and its applications

Alexander Molev

University of Sydney

Algebra Seminar, 23 May 2008

Symmetric functions

Let $a = (a_i)$, $i \in \mathbb{Z}$, be a sequence of variables.

Denote by Λ_n the ring of symmetric polynomials in x_1, \ldots, x_n with coefficients in $\mathbb{Q}[a]$.

Symmetric functions

Let $a = (a_i)$, $i \in \mathbb{Z}$, be a sequence of variables.

Denote by Λ_n the ring of symmetric polynomials in x_1, \ldots, x_n with coefficients in $\mathbb{Q}[a]$.

Consider the evaluation maps

$$\varphi_n: \Lambda_n^{\leqslant k} \to \Lambda_{n-1}^{\leqslant k}, \qquad P(x_1, \ldots, x_n) \mapsto P(x_1, \ldots, x_{n-1}, a_n)$$

Symmetric functions

Let $a = (a_i)$, $i \in \mathbb{Z}$, be a sequence of variables.

Denote by Λ_n the ring of symmetric polynomials in x_1, \ldots, x_n with coefficients in $\mathbb{Q}[a]$.

Consider the evaluation maps

$$\varphi_n: \Lambda_n^{\leqslant k} \to \Lambda_{n-1}^{\leqslant k}, \qquad P(x_1, \ldots, x_n) \mapsto P(x_1, \ldots, x_{n-1}, a_n)$$

and the corresponding inverse limit

$$\Lambda^{\leqslant k} = \varprojlim \Lambda_n^{\leqslant k}, \qquad n \to \infty.$$

The elements of $\Lambda^{\leq k}$ are sequences

$$P = (P_0, P_1, P_2, \dots), \qquad P_n \in \Lambda_n^{\leqslant k}$$

such that

$$\varphi_n(P_n) = P_{n-1}$$
 for $n = 1, 2, \dots$

The elements of $\Lambda^{\leq k}$ are sequences

$$P = (P_0, P_1, P_2, \dots), \qquad P_n \in \Lambda_n^{\leqslant k}$$

such that

$$\varphi_n(P_n) = P_{n-1}$$
 for $n = 1, 2, ...$

Then the union $\Lambda^a = \bigcup_{k>0} \Lambda^{\leqslant k}$ is a ring with the product

$$PQ = (P_0Q_0, P_1Q_1, P_2Q_2, \dots), \qquad Q = (Q_0, Q_1, Q_2, \dots)$$

Elements of Λ^a are called (double) symmetric functions.

They can be viewed as formal series.

Elements of Λ^a are called (double) symmetric functions.

They can be viewed as formal series.

Examples. We have

$$\varphi_n: \sum_{i=1}^n (x_i^k - a_i^k) \mapsto \sum_{i=1}^{n-1} (x_i^k - a_i^k)$$

hence

$$p_k(x \| a) = \sum_{i=1}^{\infty} (x_i^k - a_i^k) \in \Lambda^a,$$

the power sums symmetric function.

Proposition. The following are elements of Λ^a :

$$e_k(x \| a) = \sum_{i_1, \dots, i_k} (x_{i_1} - a_{i_1}) \dots (x_{i_k} - a_{i_k+k-1}),$$

$$h_k(x \| a) = \sum_{i_1, \dots, i_k} (x_{i_1} - a_{i_1}) \dots (x_{i_k} - a_{i_k-k+1}).$$

Proposition. The following are elements of Λ^a :

$$e_k(x \parallel a) = \sum_{i_1 > \dots > i_k} (x_{i_1} - a_{i_1}) \dots (x_{i_k} - a_{i_k+k-1}),$$

 $h_k(x \parallel a) = \sum_{i_1 > \dots > i_k} (x_{i_1} - a_{i_1}) \dots (x_{i_k} - a_{i_k-k+1}).$

They are called the elementary and complete symmetric functions, respectively.

Proposition. The following are elements of Λ^a :

$$e_k(x \parallel a) = \sum_{i_1 > \dots > i_k} (x_{i_1} - a_{i_1}) \dots (x_{i_k} - a_{i_k+k-1}),$$

 $h_k(x \parallel a) = \sum_{i_1 > \dots > i_k} (x_{i_1} - a_{i_1}) \dots (x_{i_k} - a_{i_k-k+1}).$

They are called the elementary and complete symmetric functions, respectively.

Proof.

$$1 + \sum_{k=1}^{\infty} \frac{e_k(x \| a) t^k}{(1 + a_1 t) \dots (1 + a_k t)} = \prod_{i=1}^{\infty} \frac{1 + x_i t}{1 + a_i t},$$

$$1 + \sum_{k=1}^{\infty} \frac{h_k(x \| a) t^k}{(1 - a_0 t) \dots (1 - a_{-k+1} t)} = \prod_{i=1}^{\infty} \frac{1 - a_i t}{1 - x_i t}.$$

Example. The diagram $\lambda = (5, 5, 3)$ is

Example. The diagram $\lambda = (5, 5, 3)$ is

The number of boxes is the weight of the diagram, denoted $|\lambda|$. The number of nonzero rows is its length, denoted $\ell(\lambda)$.

Example. The diagram $\lambda = (5, 5, 3)$ is

$$|\lambda|=13$$
 $\ell(\lambda)=3$

The number of boxes is the weight of the diagram, denoted $|\lambda|$. The number of nonzero rows is its length, denoted $\ell(\lambda)$. A reverse λ -tableau T is obtained by filling in the boxes of λ with the numbers $1,2,\ldots$ in such a way that the entries weakly decrease along the rows and strictly decrease down the columns. If $\alpha=(i,j)$ is a box of λ we let $T(\alpha)=T(i,j)$ denote the entry of T in the box α .

A reverse λ -tableau T is obtained by filling in the boxes of λ with the numbers $1,2,\ldots$ in such a way that the entries weakly decrease along the rows and strictly decrease down the columns. If $\alpha=(i,j)$ is a box of λ we let $T(\alpha)=T(i,j)$ denote the entry of T in the box α .

Example. A reverse λ -tableau for $\lambda = (5, 5, 3)$:

8	8	4	2	2
4	3	2	1	1
2	1	1		

Double Schur functions

For any diagram λ define the (double) Schur function by

$$s_{\lambda}(x \parallel a) = \sum_{T} \prod_{\alpha \in \lambda} (x_{T(\alpha)} - a_{T(\alpha) - c(\alpha)}),$$

summed over the reverse λ -tableaux T,

 $c(\alpha) = j - i$ is the content of the box $\alpha = (i, j)$.

Double Schur functions

For any diagram λ define the (double) Schur function by

$$s_{\lambda}(x \| a) = \sum_{T} \prod_{\alpha \in \lambda} (x_{T(\alpha)} - a_{T(\alpha) - c(\alpha)}),$$

summed over the reverse λ -tableaux T,

$$c(\alpha) = j - i$$
 is the content of the box $\alpha = (i, j)$.

Proposition.

$$s_{\lambda}(x \| a) \in \Lambda^a$$
 for all diagrams λ .

Example. For $\lambda = (2, 1)$ the reverse tableaux are

i	j	with	i≥i	and	i > k
k		_	- 1		-

Example. For $\lambda = (2, 1)$ the reverse tableaux are

Hence

$$s_{(2,1)}(x \| a) = \sum_{i \geqslant j, \ i > k} (x_i - a_i)(x_j - a_{j-1})(x_k - a_{k+1}).$$

We have $s_{(k)}(x \| a) = h_k(x \| a), \quad s_{(1^k)}(x \| a) = e_k(x \| a).$

We have
$$s_{(k)}(x \| a) = h_k(x \| a), \quad s_{(1^k)}(x \| a) = e_k(x \| a).$$

Indeed, the tableaux are

$$i_1 \quad i_2 \quad \cdots \quad i_k$$

$$\vdots$$

$$i_k$$

We have $s_{(k)}(x \| a) = h_k(x \| a), \quad s_{(1^k)}(x \| a) = e_k(x \| a).$

Indeed, the tableaux are

Hence,

$$s_{(k)}(x \| a) = \sum_{i_1 \geqslant \dots \geqslant i_k} (x_{i_1} - a_{i_1}) \dots (x_{i_k} - a_{i_k - k + 1}),$$

 $s_{(1^k)}(x \| a) = \sum_{i_1 > \dots > i_k} (x_{i_1} - a_{i_1}) \dots (x_{i_k} - a_{i_k + k - 1}).$

Remark. The direct extension of the definition of $s_{\lambda}(x \parallel a)$ to skew diagrams λ/μ does not give an element of Λ^a .

Remark. The direct extension of the definition of $s_{\lambda}(x \parallel a)$ to skew diagrams λ/μ does not give an element of Λ^a .

If $\lambda = (2)$ and $\mu = (1)$, then we would have

$$s_{(2)/(1)}(x \| a) = \sum_{i=1}^{\infty} (x_i - a_{i-1}).$$

Remark. The direct extension of the definition of $s_{\lambda}(x \parallel a)$ to skew diagrams λ/μ does not give an element of Λ^a .

If $\lambda =$ (2) and $\mu =$ (1), then we would have

$$s_{(2)/(1)}(x \| a) = \sum_{i=1}^{\infty} (x_i - a_{i-1}).$$

However, for n = 1, 2, ... the polynomials

$$\sum_{i=1}^n (x_i - a_{i-1})$$

are not consistent with respect to the evaluation maps $x_n := a_n$.

For any partition $\lambda = (\lambda_1, \dots, \lambda_n)$ set

$$p_{\lambda}(x \parallel a) = p_{\lambda_1}(x \parallel a) \dots p_{\lambda_n}(x \parallel a),$$

 $e_{\lambda}(x \parallel a) = e_{\lambda_1}(x \parallel a) \dots e_{\lambda_n}(x \parallel a),$

$$h_{\lambda}(x \parallel a) = h_{\lambda_1}(x \parallel a) \dots h_{\lambda_n}(x \parallel a).$$

For any partition $\lambda = (\lambda_1, \dots, \lambda_n)$ se

$$p_{\lambda}(x \| a) = p_{\lambda_1}(x \| a) \dots p_{\lambda_n}(x \| a),$$

 $e_{\lambda}(x \| a) = e_{\lambda_1}(x \| a) \dots e_{\lambda_n}(x \| a),$
 $h_{\lambda}(x \| a) = h_{\lambda_1}(x \| a) \dots h_{\lambda_n}(x \| a).$

Theorem. Each of the sets $\{p_{\lambda}(x \| a)\}$, $\{e_{\lambda}(x \| a)\}$, $\{h_{\lambda}(x \| a)\}$ and $\{s_{\lambda}(x \| a)\}$, parameterized by the set \mathcal{P} of all partitions λ , forms a basis of Λ^a over $\mathbb{Q}[a]$.

Under the specialization a=(0) the ring Λ^a becomes the ring Λ of symmetric functions. It admits six distinguished bases, parameterized by partitions:

 $\{p_{\lambda}(x)\}, \{e_{\lambda}(x)\}, \{h_{\lambda}(x)\}, \{s_{\lambda}(x)\}, \{m_{\lambda}(x)\} \text{ and } \{f_{\lambda}(x)\}.$

Under the specialization a=(0) the ring Λ^a becomes the ring Λ of symmetric functions. It admits six distinguished bases, parameterized by partitions:

$$\{p_{\lambda}(x)\}, \{e_{\lambda}(x)\}, \{h_{\lambda}(x)\}, \{s_{\lambda}(x)\}, \{m_{\lambda}(x)\} \text{ and } \{f_{\lambda}(x)\}.$$

The $m_{\lambda}(x)$ and $f_{\lambda}(x)$ are the monomial and forgotten symmetric functions, respectively.

Under the specialization a=(0) the ring Λ^a becomes the ring Λ of symmetric functions. It admits six distinguished bases, parameterized by partitions:

$$\{p_{\lambda}(x)\}, \{e_{\lambda}(x)\}, \{h_{\lambda}(x)\}, \{s_{\lambda}(x)\}, \{m_{\lambda}(x)\} \text{ and } \{f_{\lambda}(x)\}.$$

The $m_{\lambda}(x)$ and $f_{\lambda}(x)$ are the monomial and forgotten symmetric functions, respectively. We have

$$m_{\lambda}(x) = \sum x_{\sigma(1)}^{\lambda_1} x_{\sigma(2)}^{\lambda_2} \dots x_{\sigma(n)}^{\lambda_n},$$

summed over permutations σ of the x_i which give distinct monomials.

There is an involution $\omega : \Lambda \to \Lambda$ such that

$$egin{align} \omega: m{e}_\lambda(x) \mapsto h_\lambda(x), & h_\lambda(x) \mapsto m{e}_\lambda(x), \ & m_\lambda(x) \mapsto f_\lambda(x), & f_\lambda(x) \mapsto m_\lambda(x), \ & p_\lambda(x) \mapsto arepsilon_\lambda p_\lambda(x), & arepsilon_\lambda = (-1)^{|\lambda| - \ell(\lambda)}, \ & m{s}_\lambda(x) \mapsto m{s}_{\lambda'}(x). & & \end{split}$$

where $\lambda' = (\lambda'_1, \dots, \lambda'_m)$ and λ'_i is the number of boxes in column i of λ .

Questions.

Questions.

▶ Are there analogues of $m_{\lambda}(x)$, $f_{\lambda}(x)$ and $s_{\lambda/\mu}(x)$ in Λ^a ?

Questions.

- ▶ Are there analogues of $m_{\lambda}(x)$, $f_{\lambda}(x)$ and $s_{\lambda/\mu}(x)$ in Λ^a ?
- ▶ Is there an analogue of ω on Λ^a ?

- ▶ Are there analogues of $m_{\lambda}(x)$, $f_{\lambda}(x)$ and $s_{\lambda/\mu}(x)$ in Λ^a ?
- ▶ Is there an analogue of ω on Λ^a ?
- ▶ What are the transition matrices between the bases of Λ^a ?

- ▶ Are there analogues of $m_{\lambda}(x)$, $f_{\lambda}(x)$ and $s_{\lambda/\mu}(x)$ in Λ^a ?
- ▶ Is there an analogue of ω on Λ^a ?
- ▶ What are the transition matrices between the bases of Λ^a ?

Answers.

- ▶ Are there analogues of $m_{\lambda}(x)$, $f_{\lambda}(x)$ and $s_{\lambda/\mu}(x)$ in Λ^a ?
- ▶ Is there an analogue of ω on Λ^a ?
- ▶ What are the transition matrices between the bases of Λ^a ?

Answers.

Yes.

- ▶ Are there analogues of $m_{\lambda}(x)$, $f_{\lambda}(x)$ and $s_{\lambda/\mu}(x)$ in Λ^a ?
- ▶ Is there an analogue of ω on Λ^a ?
- What are the transition matrices between the bases of Λ^a?

Answers.

- Yes.
- Yes.

- ▶ Are there analogues of $m_{\lambda}(x)$, $f_{\lambda}(x)$ and $s_{\lambda/\mu}(x)$ in Λ^a ?
- ▶ Is there an analogue of ω on Λ^a ?
- ▶ What are the transition matrices between the bases of Λ^a ?

Answers.

- Yes.
- Yes.
- ▶ Work in progress for $\{s_{\lambda}(x \| a)\}$ and $\{h_{\lambda}(x \| a)\}$ (Alex Fun).

$$\prod_{i,j} \frac{1}{1 - x_i y_j} = \sum_{\lambda \in \mathcal{P}} s_{\lambda}(x) s_{\lambda}(y),$$

where
$$y = (y_1, y_2, ...)$$
.

$$\prod_{i,j} \frac{1}{1 - x_i y_j} = \sum_{\lambda \in \mathcal{P}} s_{\lambda}(x) s_{\lambda}(y),$$

where
$$y = (y_1, y_2, ...)$$
.

For
$$\lambda = (1^{m_1} 2^{m_2} \dots)$$
 set $z_{\lambda} = \prod_{i \geqslant 1} i^{m_i} m_i!$.

$$\prod_{i,j} \frac{1}{1 - x_i y_j} = \sum_{\lambda \in \mathcal{P}} s_{\lambda}(x) s_{\lambda}(y),$$

where
$$y = (y_1, y_2, ...)$$
.

For $\lambda = (1^{m_1} 2^{m_2} \dots)$ set $z_{\lambda} = \prod_{i \ge 1} i^{m_i} m_i!$. Then

$$\prod_{i,j} \frac{1}{1 - x_i y_j} = \sum_{\lambda \in \mathcal{P}} \frac{1}{z_{\lambda}} p_{\lambda}(x) p_{\lambda}(y)$$

$$\prod_{i,j} \frac{1}{1 - x_i y_j} = \sum_{\lambda \in \mathcal{P}} s_{\lambda}(x) s_{\lambda}(y),$$

where $y = (y_1, y_2, ...)$.

For $\lambda = (1^{m_1} 2^{m_2} \dots)$ set $z_{\lambda} = \prod_{i \geq 1} i^{m_i} m_i!$. Then

$$\prod_{i,j} \frac{1}{1 - x_i y_j} = \sum_{\lambda \in \mathcal{D}} \frac{1}{z_{\lambda}} p_{\lambda}(x) p_{\lambda}(y)$$

and

$$\prod_{i,j} \frac{1}{1 - x_i y_j} = \sum_{\lambda \in \mathcal{P}} h_{\lambda}(x) m_{\lambda}(y) = \sum_{\lambda \in \mathcal{P}} e_{\lambda}(x) f_{\lambda}(y).$$

Cauchy identity

Theorem. We have the expansion

$$\prod_{i,j} \frac{1-a_i y_j}{1-x_i y_j} = \sum_{\lambda \in \mathcal{P}} s_{\lambda}(x \parallel a) s_{\lambda}(y,a),$$

Cauchy identity

Theorem. We have the expansion

$$\prod_{i,j} \frac{1 - a_i y_j}{1 - x_i y_j} = \sum_{\lambda \in \mathcal{P}} s_{\lambda}(x \parallel a) s_{\lambda}(y, a),$$

where $s_{\lambda}(y, a)$ is the dual Schur function,

$$s_{\lambda}(y,a) = \sum_{T} \prod_{\alpha \in \lambda} Y_{T(\alpha)}(a_{-c(\alpha)+1}, a_{-c(\alpha)}),$$

summed over the reverse λ -tableaux T

Cauchy identity

Theorem. We have the expansion

$$\prod_{i,j} \frac{1 - a_i y_j}{1 - x_i y_j} = \sum_{\lambda \in \mathcal{P}} s_{\lambda}(x \parallel a) s_{\lambda}(y, a),$$

where $s_{\lambda}(y, a)$ is the dual Schur function,

$$s_{\lambda}(y,a) = \sum_{T} \prod_{\alpha \in \lambda} Y_{T(\alpha)}(a_{-c(\alpha)+1}, a_{-c(\alpha)}),$$

summed over the reverse λ -tableaux T with

$$Y_i(a,b) = \frac{y_i(1-ay_{i-1})\dots(1-ay_1)}{(1-by_i)\dots(1-by_1)}.$$

Examples.

$$s_{(1)}(y,a) = \sum_{i} Y_i(a_1,a_0) = \sum_{i} \frac{y_i(1-a_1 y_{i-1}) \dots (1-a_1 y_1)}{(1-a_0 y_i) \dots (1-a_0 y_1)}.$$

Examples.

$$s_{(1)}(y,a) = \sum_{i} Y_i(a_1,a_0) = \sum_{i} \frac{y_i(1-a_1 y_{i-1}) \dots (1-a_1 y_1)}{(1-a_0 y_i) \dots (1-a_0 y_1)}.$$

The dual elementary and complete symmetric functions are

$$e_k(y, a) = s_{(1^k)}(y, a), \qquad h_k(y, a) = s_{(k)}(y, a),$$

Examples.

$$s_{(1)}(y,a) = \sum_{i} Y_i(a_1,a_0) = \sum_{i} \frac{y_i(1-a_1 y_{i-1}) \dots (1-a_1 y_1)}{(1-a_0 y_i) \dots (1-a_0 y_1)}.$$

The dual elementary and complete symmetric functions are

$$e_k(y, a) = s_{(1^k)}(y, a), \qquad h_k(y, a) = s_{(k)}(y, a),$$

so that

$$e_k(y,a) = \sum_{i_1 > \dots > i_k} Y_{i_1}(a_1,a_0) Y_{i_2}(a_2,a_1) \dots Y_{i_k}(a_k,a_{k-1}),$$

$$h_k(y,a) = \sum_{i_1 \ge \dots \ge i_k} Y_{i_1}(a_1,a_0) Y_{i_2}(a_0,a_{-1}) \dots Y_{i_k}(a_{-k+2},a_{-k+1}).$$

Proposition. We have the expansions

$$\prod_{i,j} \frac{1 - a_i y_j}{1 - x_i y_j} = \sum_{\lambda \in \mathcal{P}} \frac{1}{z_{\lambda}} p_{\lambda}(x \| a) p_{\lambda}(y)$$

Proposition. We have the expansions

$$\prod_{i,j} \frac{1 - a_i y_j}{1 - x_i y_j} = \sum_{\lambda \in \mathcal{P}} \frac{1}{z_{\lambda}} p_{\lambda}(x \| a) p_{\lambda}(y)$$

and

$$\prod_{i,j} \frac{1 - a_i y_j}{1 - x_i y_j} = \sum_{\lambda \in \mathcal{P}} h_{\lambda}(x \parallel a) m_{\lambda}(y, a),$$

Proposition. We have the expansions

$$\prod_{i,j} \frac{1 - a_i y_j}{1 - x_i y_j} = \sum_{\lambda \in \mathcal{P}} \frac{1}{z_{\lambda}} p_{\lambda}(x \| a) p_{\lambda}(y)$$

and

$$\prod_{i,j} \frac{1 - a_i y_j}{1 - x_i y_j} = \sum_{\lambda \in \mathcal{P}} h_{\lambda}(x \parallel a) m_{\lambda}(y, a),$$

where

$$m_{\lambda}(y,a) = \sum \prod_{i=1}^{n} \frac{y_{\sigma(i)}^{\lambda_{i}}}{(1 - a_{0} y_{\sigma(i)}) \dots (1 - a_{-\lambda_{i}+1} y_{\sigma(i)})},$$

summed over permutations σ of the y_i which give distinct monomials.

For a partition $\lambda = (\lambda_1, \dots, \lambda_n)$ set

$$h_{\lambda}(y,a) = h_{\lambda_1}(y,a) \dots h_{\lambda_n}(y,a),$$

$$e_{\lambda}(y,a) = e_{\lambda_1}(y,a) \dots e_{\lambda_n}(y,a).$$

For a partition $\lambda = (\lambda_1, \dots, \lambda_n)$ set

$$h_{\lambda}(y,a) = h_{\lambda_1}(y,a) \dots h_{\lambda_n}(y,a),$$

 $e_{\lambda}(y,a) = e_{\lambda_1}(y,a) \dots e_{\lambda_n}(y,a).$

The dual symmetric functions $s_{\lambda}(y, a)$, $e_{\lambda}(y, a)$, $h_{\lambda}(y, a)$, $m_{\lambda}(y, a)$ are elements of the ring $\widehat{\Lambda}^a$ of formal series of the (usual) symmetric functions in y with coefficients in $\mathbb{Q}[a]$,

For a partition $\lambda = (\lambda_1, \dots, \lambda_n)$ set

$$h_{\lambda}(y,a) = h_{\lambda_1}(y,a) \dots h_{\lambda_n}(y,a),$$

 $e_{\lambda}(y,a) = e_{\lambda_1}(y,a) \dots e_{\lambda_n}(y,a).$

The dual symmetric functions $s_{\lambda}(y, a)$, $e_{\lambda}(y, a)$, $h_{\lambda}(y, a)$, $m_{\lambda}(y, a)$ are elements of the ring $\widehat{\Lambda}^a$ of formal series of the (usual) symmetric functions in y with coefficients in $\mathbb{Q}[a]$,

$$\widehat{\Lambda}^{a} = \Big\{ \sum_{\lambda = a} c_{\lambda}(a) \, m_{\lambda}(y) \mid c_{\lambda}(a) \in \mathbb{Q}[a] \Big\}.$$

$$s_{\lambda}(y, a)$$
, $e_{\lambda}(y, a)$, $h_{\lambda}(y, a)$, $m_{\lambda}(y, a)$

$$s_{\lambda}(y, a), \quad e_{\lambda}(y, a), \quad h_{\lambda}(y, a), \quad m_{\lambda}(y, a)$$

are respectively

$$s_{\lambda}(y)$$
, $e_{\lambda}(y)$, $h_{\lambda}(y)$, $m_{\lambda}(y)$.

$$s_{\lambda}(y, a)$$
, $e_{\lambda}(y, a)$, $h_{\lambda}(y, a)$, $m_{\lambda}(y, a)$

are respectively

$$s_{\lambda}(y)$$
, $e_{\lambda}(y)$, $h_{\lambda}(y)$, $m_{\lambda}(y)$.

Example.

$$s_{(1)}(y,a) = \sum_{k=1}^{\infty} (a_0 - a_1)^{k-1} m_{(1^k)}(y,a)$$

$$s_{\lambda}(y, a)$$
, $e_{\lambda}(y, a)$, $h_{\lambda}(y, a)$, $m_{\lambda}(y, a)$

are respectively

$$s_{\lambda}(y)$$
, $e_{\lambda}(y)$, $h_{\lambda}(y)$, $m_{\lambda}(y)$.

Example.

$$s_{(1)}(y,a) = \sum_{k=1}^{\infty} (a_0 - a_1)^{k-1} m_{(1^k)}(y,a)$$
$$= \sum_{\alpha,\beta>0} (-1)^{\beta} a_0^{\alpha} a_1^{\beta} s_{(\alpha|\beta)}(y),$$

where $(\alpha|\beta)$ is the hook diagram with arm α and leg β .

$$\prod_{i,j} \frac{1 - a_i y_j}{1 - x_i y_j} = \sum_{\lambda \in \mathcal{P}} m_{\lambda}(x \parallel a) h_{\lambda}(y, a) = \sum_{\lambda \in \mathcal{P}} f_{\lambda}(x \parallel a) e_{\lambda}(y, a).$$

$$\prod_{i,j} \frac{1 - a_i y_j}{1 - x_i y_j} = \sum_{\lambda \in \mathcal{P}} m_{\lambda}(x \| a) h_{\lambda}(y, a) = \sum_{\lambda \in \mathcal{P}} f_{\lambda}(x \| a) e_{\lambda}(y, a).$$

$$\prod_{i,j} \frac{1 - a_i y_j}{1 - x_i y_j} = \sum_{\lambda \in \mathcal{P}} m_{\lambda}(x \parallel a) h_{\lambda}(y, a) = \sum_{\lambda \in \mathcal{P}} f_{\lambda}(x \parallel a) e_{\lambda}(y, a).$$

$$m_{(1)}(x \| a) = \sum_{i} (x_i - a_i),$$

$$\prod_{i,j} \frac{1 - a_i y_j}{1 - x_i y_j} = \sum_{\lambda \in \mathcal{P}} m_{\lambda}(x \parallel a) h_{\lambda}(y, a) = \sum_{\lambda \in \mathcal{P}} f_{\lambda}(x \parallel a) e_{\lambda}(y, a).$$

$$m_{(1)}(x \| a) = \sum_{i} (x_i - a_i),$$

 $m_{(1^2)}(x \| a) = \sum_{i>j} (x_i - a_i)(x_j - a_{j+1}),$

$$\prod_{i,j} \frac{1 - a_i y_j}{1 - x_i y_j} = \sum_{\lambda \in \mathcal{P}} m_{\lambda}(x \parallel a) h_{\lambda}(y, a) = \sum_{\lambda \in \mathcal{P}} f_{\lambda}(x \parallel a) e_{\lambda}(y, a).$$

$$m_{(1)}(x \| a) = \sum_{i} (x_i - a_i),$$

$$m_{(1^2)}(x \| a) = \sum_{i>j} (x_i - a_i)(x_j - a_{j+1}),$$

$$m_{(2)}(x \| a) = \sum_{i} (x_i^2 - a_i^2) - (a_0 + a_1) \sum_{i} (x_i - a_i)$$

$$= h_2(x \| a) - e_2(x \| a).$$

Pairing between Λ^a and $\widehat{\Lambda}^a$

Define the bilinear pairing

$$\langle \; , \; \rangle : \Lambda^{a} \otimes \widehat{\Lambda}^{a} \to \mathbb{Q}[a], \qquad \langle h_{\lambda}(x \, \| \, a), m_{\mu}(y, a) \rangle = \delta_{\lambda \mu}.$$

Pairing between Λ^a and $\widehat{\Lambda}^a$

Define the bilinear pairing

$$\langle \ , \ \rangle : \Lambda^{a} \otimes \widehat{\Lambda}^{a} \to \mathbb{Q}[a], \qquad \langle h_{\lambda}(x \| a), m_{\mu}(y, a) \rangle = \delta_{\lambda \mu}.$$

Then the Cauchy identity implies

$$\langle s_{\lambda}(x \| a), s_{\mu}(y, a) \rangle = \delta_{\lambda \mu},$$

 $\langle p_{\lambda}(x \| a), p_{\mu}(y) \rangle = \delta_{\lambda \mu} z_{\lambda}.$

The skew Schur functions in Λ^a and $\widehat{\Lambda}^a$ can now be defined respectively by

$$\langle s_{\nu/\mu}(x \| a), s_{\lambda}(y, a) \rangle = \langle s_{\nu}(x \| a), s_{\lambda}(y, a) s_{\mu}(y, a) \rangle$$

The skew Schur functions in Λ^a and $\widehat{\Lambda}^a$ can now be defined respectively by

$$\left\langle s_{\nu/\mu}(x \| a), \ s_{\lambda}(y, a) \right\rangle = \left\langle s_{\nu}(x \| a), \ s_{\lambda}(y, a) \, s_{\mu}(y, a) \right\rangle$$

and

$$\langle s_{\lambda}(x \| a), s_{\nu/\mu}(y, a) \rangle = \langle s_{\lambda}(x \| a) s_{\mu}(x \| a), s_{\nu}(y, a) \rangle.$$

The skew Schur functions in Λ^a and $\widehat{\Lambda}^a$ can now be defined respectively by

$$\langle s_{\nu/\mu}(x \| a), s_{\lambda}(y, a) \rangle = \langle s_{\nu}(x \| a), s_{\lambda}(y, a) s_{\mu}(y, a) \rangle$$

and

$$\big\langle s_{\lambda}(x\,\|\,a),\ s_{\nu/\mu}(y,a)\big\rangle = \big\langle s_{\lambda}(x\,\|\,a)\,s_{\mu}(x\,\|\,a),\ s_{\nu}(y,a)\big\rangle.$$

Example. We have

$$s_{(2)/(1)}(x \| a) = s_{(1)}(x \| a) = \sum_{i=1}^{\infty} (x_i - a_i),$$

 $s_{(2)/(1)}(y, a) = \sum_{i=1}^{\infty} Y_i(a_0, a_{-1}).$

Define the Littlewood–Richardson polynomials $c_{\lambda\mu}^{\nu}(a)$ and the dual Littlewood–Richardson polynomials $c_{\lambda\mu}^{\prime\nu}(a)$ by the expansions

$$s_{\lambda}(x \parallel a) \, s_{\mu}(x \parallel a) = \sum_{
u} c^{
u}_{\lambda\mu}(a) \, s_{
u}(x \parallel a) \qquad ext{(finite sum)},$$

$$s_{\lambda}(y,a)\,s_{\mu}(y,a) = \sum_{
u} c_{\lambda\mu}^{\prime\,
u}(a)\,s_{
u}(y,a) \qquad ext{(infinite series)}.$$

Define the Littlewood–Richardson polynomials $c_{\lambda\mu}^{\nu}(a)$ and the dual Littlewood–Richardson polynomials $c_{\lambda\mu}^{\prime\nu}(a)$ by the expansions

$$s_{\lambda}(x \parallel a) \, s_{\mu}(x \parallel a) = \sum_{
u} c_{\lambda\mu}^{
u}(a) \, s_{
u}(x \parallel a) \qquad ext{(finite sum)},$$

$$s_{\lambda}(y,a)\,s_{\mu}(y,a) = \sum c_{\lambda\mu}^{\prime\,\nu}(a)\,s_{\nu}(y,a)$$
 (infinite series).

Then

$$s_{
u/\mu}(x \parallel a) = \sum_{\lambda} {c_{\lambda\mu}^{\prime}}(a) \, s_{\lambda}(x \parallel a)$$
 (finite sum), $s_{
u/\mu}(y,a) = \sum_{\lambda} {c_{\lambda\mu}^{\nu}}(a) \, s_{\lambda}(y,a)$ (infinite series).

Interpolation approach

For any partition μ introduce the sequence

$$a_{\mu}=(a_{1-\mu_{1}},a_{2-\mu_{2}},\dots).$$

Interpolation approach

For any partition μ introduce the sequence

$$a_{\mu}=(a_{1-\mu_{1}},a_{2-\mu_{2}},\dots).$$

Given any element $P(x) \in \Lambda^a$, the value $P(a_\mu)$ is a well-defined element of $\mathbb{Q}[a]$.

Interpolation approach

For any partition μ introduce the sequence

$$a_{\mu}=(a_{1-\mu_{1}},a_{2-\mu_{2}},\dots).$$

Given any element $P(x) \in \Lambda^a$, the value $P(a_\mu)$ is a well-defined element of $\mathbb{Q}[a]$.

For instance,

$$s_{(1)}(a_{\mu} \| a) = \sum_{i=1}^{\infty} (a_{i-\mu_i} - a_i) = |a_{\mu}| - |a_{\emptyset}|.$$

For $P(x) \in \Lambda^a$ consider the expansion

$$P(x) s_{\mu}(x \| a) = \sum_{\nu} c_{P, \mu}^{\nu} s_{\nu}(x \| a).$$

For $P(x) \in \Lambda^a$ consider the expansion

$$P(x) s_{\mu}(x \| a) = \sum_{\nu} c_{P, \mu}^{\nu} s_{\nu}(x \| a).$$

Then

ightharpoonup $c_{P,\,\mu}^{\,
u}=$ 0 unless $\mu\subseteq\nu$,

For $P(x) \in \Lambda^a$ consider the expansion

$$P(x) s_{\mu}(x \| a) = \sum_{\nu} c_{P, \mu}^{\nu} s_{\nu}(x \| a).$$

Then

- $ightharpoonup c_{P,\,\mu}^{\,
 u}=0 \text{ unless } \mu\subseteq\nu,$
- $ightharpoonup c_{P,\,\mu}^{\,\mu} = P(a_{\mu}),$

For $P(x) \in \Lambda^a$ consider the expansion

$$P(x) s_{\mu}(x \| a) = \sum_{\nu} c_{P, \mu}^{\nu} s_{\nu}(x \| a).$$

Then

$$ightharpoonup c_{P,\,\mu}^{\,
u}=$$
 0 unless $\mu\subseteq
u,$

$$ightharpoonup c_{P,\,\mu}^{\,\mu} = P(a_{\mu}),$$

$$c_{P,\,\mu}^{\nu} = rac{1}{|a_{
u}| - |a_{\mu}|} \Biggl(\sum_{\mu o \mu^{+}} c_{P,\,\mu^{+}}^{\,\nu} - \sum_{\mu^{-} o
u} c_{P,\,\mu}^{\,
u^{-}} \Biggr).$$

Moreover,

$$c_{P,\,\mu}^{\,
u} = \sum_{R} \sum_{k=0}^{I} rac{P(a_{
ho^{(k)}})}{(|a_{
ho^{(k)}}| - |a_{
ho^{(0)}}|) \ldots \wedge \ldots (|a_{
ho^{(k)}}| - |a_{
ho^{(l)}}|)},$$

Moreover,

$$c_{P,\,\mu}^{\,
u} = \sum_{R} \sum_{k=0}^{I} rac{P(a_{
ho^{(k)}})}{(|a_{
ho^{(k)}}| - |a_{
ho^{(0)}}|) \ldots \wedge \ldots (|a_{
ho^{(k)}}| - |a_{
ho^{(l)}}|)},$$

summed over all sequences of partitions R of the form

$$\mu = \rho^{(0)} \rightarrow \rho^{(1)} \rightarrow \cdots \rightarrow \rho^{(l-1)} \rightarrow \rho^{(l)} = \nu,$$

 $\rho \to \sigma$ means σ is obtained from ρ by adding one box.

Example. The Littlewood–Richardson polynomials $c_{\lambda\mu}^{\nu}(a)$ are calculated by taking $P(x) = s_{\lambda}(x \| a)$.

Example. The Littlewood–Richardson polynomials $c_{\lambda\mu}^{\nu}(a)$ are calculated by taking $P(x) = s_{\lambda}(x \| a)$.

Now apply the interpolation formula to

$$P(x) = \prod_{i,j} \frac{1 - a_i y_j}{1 - x_i y_j}$$

Example. The Littlewood–Richardson polynomials $c_{\lambda\mu}^{\nu}(a)$ are calculated by taking $P(x) = s_{\lambda}(x \| a)$.

Now apply the interpolation formula to

$$P(x) = \prod_{i,j} \frac{1 - a_i y_j}{1 - x_i y_j}$$

and use it to prove the generalized Cauchy identity

$$\prod_{i,j} \frac{1 - a_{i-\mu_i} y_j}{1 - x_i y_j} \, s_{\mu}(x \| a) = \sum_{\nu \in \mathcal{P}, \ \mu \subseteq \nu} s_{\nu}(x \| a) \, s_{\nu/\mu}(y,a).$$

$$\bigcup_{\mu^+} \left\{ \mathsf{reverse} \ \nu / \mu^+ - \mathsf{tableaux} \right\} \longleftrightarrow \bigcup_{\nu^-} \left\{ \mathsf{reverse} \ \nu^- / \mu - \mathsf{tableaux} \right\}$$

provided by the jeu de taquin:

$$\bigcup_{\mu^+} \left\{ \operatorname{reverse} \nu / \mu^+ - \operatorname{tableaux} \right\} \longleftrightarrow \bigcup_{\nu^-} \left\{ \operatorname{reverse} \nu^- / \mu - \operatorname{tableaux} \right\}$$

		4	2	2
	3	2	1	1
2	1	1		

$$\bigcup_{\mu^+} \left\{ \operatorname{reverse} \nu / \mu^+ - \operatorname{tableaux} \right\} \longleftrightarrow \bigcup_{\nu^-} \left\{ \operatorname{reverse} \nu^- / \mu - \operatorname{tableaux} \right\}$$

$$\bigcup_{\mu^+} \left\{ \mathsf{reverse} \ \nu / \mu^+ - \mathsf{tableaux} \right\} \longleftrightarrow \bigcup_{\nu^-} \left\{ \mathsf{reverse} \ \nu^- / \mu - \mathsf{tableaux} \right\}$$

	4	•	2	2
	3	2	1	1
2	1	1		

$$\bigcup_{\mu^+} \left\{ \mathsf{reverse} \ \nu / \mu^+ - \mathsf{tableaux} \right\} \longleftrightarrow \bigcup_{\nu^-} \left\{ \mathsf{reverse} \ \nu^- / \mu - \mathsf{tableaux} \right\}$$

	4	2	2	2
	3	•	1	1
2	1	1		

$$\bigcup_{\mu^+} \left\{ \mathsf{reverse} \ \nu / \mu^+ - \mathsf{tableaux} \right\} \longleftrightarrow \bigcup_{\nu^-} \left\{ \mathsf{reverse} \ \nu^- / \mu - \mathsf{tableaux} \right\}$$

$$\bigcup_{\mu^+} \left\{ \operatorname{reverse} \nu / \mu^+ - \operatorname{tableaux} \right\} \longleftrightarrow \bigcup_{\nu^-} \left\{ \operatorname{reverse} \nu^- / \mu - \operatorname{tableaux} \right\}$$

	4	2	2	2
	3	1	1	1
2	1			

Isomorphism ω_a

Define the new parameter sequence a' by

$$(a')_i = -a_{-i+1}, \qquad i \in \mathbb{Z},$$

Isomorphism ω_a

Define the new parameter sequence a' by

$$(a')_i = -a_{-i+1}, \qquad i \in \mathbb{Z},$$

so that
$$a' = (\dots, -a_2, -a_1, -a_0, -a_{-1}, -a_{-2}, \dots).$$

Isomorphism ω_a

Define the new parameter sequence a' by

$$(a')_i = -a_{-i+1}, \qquad i \in \mathbb{Z},$$

so that
$$a' = (\dots, -a_2, -a_1, -a_0, -a_{-1}, -a_{-2}, \dots).$$

Introduce the isomorphism $\omega_a: \Lambda^a \to \Lambda^{a'}$ by

$$\omega_a: e_k(x \parallel a) \mapsto h_k(x \parallel a').$$

Theorem. We have $\omega_{a} \circ \omega_{a'} = \mathrm{id}$

Theorem. We have $\omega_a \circ \omega_{a'} = id$ and

$$\omega_a: s_{\lambda}(x \| a) \mapsto s_{\lambda'}(x \| a'),$$

$$\mathcal{D}_a: S_{\lambda}(X \parallel a) \mapsto S_{\lambda'}(X \parallel a)$$

$$p_{\lambda}(x \| a) \mapsto \varepsilon_{\lambda} p_{\lambda}(x \| a'), \qquad \varepsilon_{\lambda} = (-1)^{|\lambda| - \ell(\lambda)},$$

$$m_{\lambda}(x \| a) \mapsto f_{\lambda}(x \| a'),$$

$$h_{\lambda}(x \| a) \mapsto h_{\lambda}(x \| a'),$$

$$h_{\lambda}(x \| a) \mapsto e_{\lambda}(x \| a').$$

Corollary. We have the identities

$$\prod_{i,j} \frac{1+x_i y_j}{1+a_i y_j} = \sum_{\lambda \in \mathcal{P}} s_{\lambda}(x \parallel a) s_{\lambda'}(y, a'),$$

$$\prod_{i,j} \frac{1+x_i y_j}{1+a_i y_j} = \sum_{\lambda \in \mathcal{P}} e_{\lambda}(x \parallel a) m_{\lambda}(y, a'),$$

$$\prod_{i,j} \frac{1 + x_i y_j}{1 + a_i y_j} = \sum_{\lambda \in \mathcal{P}} \frac{\varepsilon_{\lambda}}{z_{\lambda}} p_{\lambda}(x \| a) p_{\lambda}(y),$$

$$\prod_{i,j} \frac{1+x_i y_j}{1+a_i y_j} = \sum_{\lambda \in \mathcal{P}} m_{\lambda}(x \parallel a) e_{\lambda}(y, a').$$

Define the polynomials $\chi^{\lambda}_{\mu}(a) \in \mathbb{Q}[a]$ by the expansion

$$p_{\mu}(x \parallel a) = \sum_{\lambda} \chi_{\mu}^{\lambda}(a) \, s_{\lambda}(x \parallel a).$$

Define the polynomials $\chi^{\lambda}_{\mu}(a) \in \mathbb{Q}[a]$ by the expansion

$$p_{\mu}(x \parallel a) = \sum_{\lambda} \chi_{\mu}^{\lambda}(a) \, s_{\lambda}(x \parallel a).$$

Properties.

$$\qquad \qquad \boldsymbol{\chi}_{\boldsymbol{\mu}}^{\boldsymbol{\lambda}}(\boldsymbol{a}) \neq \boldsymbol{0} \quad \text{only if} \quad |\boldsymbol{\lambda}| \leqslant |\boldsymbol{\mu}|.$$

Define the polynomials $\chi^{\lambda}_{\mu}(a) \in \mathbb{Q}[a]$ by the expansion

$$p_{\mu}(x \parallel a) = \sum_{\lambda} \chi_{\mu}^{\lambda}(a) \, s_{\lambda}(x \parallel a).$$

Properties.

- $\chi_{\mu}^{\lambda}(a) \neq 0$ only if $|\lambda| \leqslant |\mu|$.
- $\blacktriangleright \chi_{\mu}^{\lambda}(a)$ is homogeneous of degree $|\mu| |\lambda|$.

Define the polynomials $\chi^{\lambda}_{\mu}(a) \in \mathbb{Q}[a]$ by the expansion

$$p_{\mu}(x \parallel a) = \sum_{\lambda} \chi_{\mu}^{\lambda}(a) \, s_{\lambda}(x \parallel a).$$

Properties.

- $\chi^{\lambda}_{\mu}(a) \neq 0$ only if $|\lambda| \leqslant |\mu|$.
- $\blacktriangleright \chi^{\lambda}_{\mu}(a)$ is homogeneous of degree $|\mu| |\lambda|$.
- $\blacktriangleright \ \chi_{\mu}^{\lambda}(\mathbf{a}) = \chi_{\mu}^{\lambda} \quad \text{if} \quad |\mu| = |\lambda|.$

Hence, if $|\mu|=|\lambda|=n$, then, by the interpolation formula, the values χ^{λ}_{μ} of the irreducible character χ^{λ} of the symmetric group \mathfrak{S}_n can be found by

$$\chi_{\mu}^{\lambda} = \sum_{R} \sum_{k=1}^{n} rac{p_{\mu}(a_{
ho^{(k)}} \| \, a)}{(|a_{
ho^{(k)}}| - |a_{
ho^{(0)}}|) \ldots \wedge \ldots (|a_{
ho^{(k)}}| - |a_{
ho^{(n)}}|)},$$

Hence, if $|\mu|=|\lambda|=n$, then, by the interpolation formula, the values χ^{λ}_{μ} of the irreducible character χ^{λ} of the symmetric group \mathfrak{S}_n can be found by

$$\chi_{\mu}^{\lambda} = \sum_{R} \sum_{k=1}^{n} rac{p_{\mu}(a_{
ho^{(k)}} \| a)}{(|a_{
ho^{(k)}}| - |a_{
ho^{(0)}}|) \dots \wedge \dots (|a_{
ho^{(k)}}| - |a_{
ho^{(n)}}|)},$$

summed over all sequences R of partitions

$$\emptyset = \rho^{(0)} \to \rho^{(1)} \to \cdots \to \rho^{(n-1)} \to \rho^{(n)} = \lambda.$$

Example.

$$\chi^{\lambda}_{(1^n)} = \sum_{k=1}^n \frac{(|a_{\rho^{(k)}}| - |a_{\rho^{(0)}}|)^{n-1}}{(|a_{\rho^{(k)}}| - |a_{\rho^{(1)}}|) \dots \wedge \dots (|a_{\rho^{(k)}}| - |a_{\rho^{(n)}}|)}$$

Example.

$$\chi_{(1^n)}^{\lambda} = \sum_{R} \sum_{k=1}^{n} \frac{(|a_{\rho^{(k)}}| - |a_{\rho^{(0)}}|)^{n-1}}{(|a_{\rho^{(k)}}| - |a_{\rho^{(1)}}|) \dots \wedge \dots (|a_{\rho^{(k)}}| - |a_{\rho^{(n)}}|)}$$
$$= \sum_{R} 1$$

Example.

$$\begin{split} \chi_{(1^n)}^{\lambda} &= \sum_{R} \sum_{k=1}^{n} \frac{(|a_{\rho^{(k)}}| - |a_{\rho^{(0)}}|)^{n-1}}{(|a_{\rho^{(k)}}| - |a_{\rho^{(1)}}|) \dots \wedge \dots (|a_{\rho^{(k)}}| - |a_{\rho^{(n)}}|)} \\ &= \sum_{R} 1 \\ &= \quad \text{number of standard } \lambda \text{-tableaux}. \end{split}$$

Consider the specialization $a_i = i$ for all $i \in \mathbb{Z}$.

For partitions $\mu = (1^{m_1} 2^{m_2} \dots r^{m_r})$ and $\rho = (\rho_1, \dots, \rho_l)$ set

$$\pi_{\mu}(\rho) = \prod_{l=1}^{r} \left((1 - \rho_{1})^{k} + \cdots + (I - \rho_{l})^{k} - 1^{k} - \cdots - I^{k} \right)^{m_{k}}.$$

Consider the specialization $a_i = i$ for all $i \in \mathbb{Z}$.

For partitions $\mu = (1^{m_1} 2^{m_2} \dots r^{m_r})$ and $\rho = (\rho_1, \dots, \rho_l)$ set

$$\pi_{\mu}(\rho) = \prod_{k=1}^{r} \left((1 - \rho_1)^k + \dots + (I - \rho_I)^k - 1^k - \dots - I^k \right)^{m_k}.$$

For any skew diagram $\,\theta\,$ denote by $\,\dim\theta\,$ the number of standard $\,\theta$ -tableaux with entries in $\,\{1,2,\ldots,|\theta|\}\,$ and set

$$h_{\theta} = \frac{|\theta|!}{\dim \theta}.$$

Consider the specialization $a_i = i$ for all $i \in \mathbb{Z}$.

For partitions $\mu = (1^{m_1}2^{m_2}\dots r^{m_r})$ and $\rho = (\rho_1,\dots,\rho_l)$ set

$$\pi_{\mu}(\rho) = \prod_{k=1}^{r} \left((1 - \rho_1)^k + \dots + (I - \rho_I)^k - 1^k - \dots - I^k \right)^{m_k}.$$

For any skew diagram θ denote by $\dim \theta$ the number of standard θ -tableaux with entries in $\{1, 2, \dots, |\theta|\}$ and set

$$h_{\theta} = \frac{|\theta|!}{\dim \theta}.$$

If θ is normal (non-skew), then h_{θ} is the product of hooks of θ .

$$\chi_{\mu}^{\lambda} = \sum_{
ho \subseteq \lambda} \frac{(-1)^{|
ho|} \, \pi_{\mu}(
ho)}{h_{
ho} \, h_{\lambda/
ho}}.$$

$$\chi^{\lambda}_{\mu} = \sum_{
ho \subset \lambda} \frac{(-1)^{|
ho|} \pi_{\mu}(
ho)}{h_{
ho} h_{\lambda/
ho}}.$$

Example. If $\lambda = (n)$ then $\rho = (k)$ for k = 1, ..., n and

$$\chi^{\lambda}_{\mu} = \sum_{\rho \subset \lambda} \frac{(-1)^{|\rho|} \pi_{\mu}(\rho)}{h_{\rho} h_{\lambda/\rho}}.$$

Example. If $\lambda = (n)$ then $\rho = (k)$ for k = 1, ..., n and

$$\chi_{\mu}^{(n)} = \sum_{k=1}^{n} \frac{(-1)^{k} \left((1-k)^{\mu_{1}} - 1 \right) \dots \left((1-k)^{\mu_{r}} - 1 \right)}{k! \left(n - k \right)!}$$

$$\chi^{\lambda}_{\mu} = \sum_{
ho \subset \lambda} \frac{(-1)^{|
ho|} \pi_{\mu}(
ho)}{h_{
ho} h_{\lambda/
ho}}.$$

Example. If $\lambda = (n)$ then $\rho = (k)$ for k = 1, ..., n and

$$\chi_{\mu}^{(n)} = \sum_{k=1}^{n} \frac{(-1)^{k} \left((1-k)^{\mu_{1}} - 1 \right) \dots \left((1-k)^{\mu_{r}} - 1 \right)}{k! \left(n - k \right)!} = 1.$$

$$\pi_{\mu}(\rho) = -(\rho_1 + \rho_2)^3 (\rho_1^2 + \rho_2^2 - 2\rho_1 - 4\rho_2),$$

$$\pi_{\mu}(\rho) = -(\rho_1 + \rho_2)^3 (\rho_1^2 + \rho_2^2 - 2\rho_1 - 4\rho_2),$$

$$h_{(3\,2)}=24, \qquad h_{(3\,2)/(1)}=24/5, \qquad h_{(3\,2)/(2)}=2,$$
 $h_{(3\,2)/(1^2)}=3, \qquad h_{(3\,2)/(3)}=2, \qquad h_{(3\,2)/(2\,1)}=1,$

$$h_{(32)/(22)} = 1, \qquad h_{(32)/(32)} = 1.$$

$$\pi_{\mu}(\rho) = -(\rho_1 + \rho_2)^3 (\rho_1^2 + \rho_2^2 - 2\rho_1 - 4\rho_2),$$

$$h_{(3\,2)} = 24,$$
 $h_{(3\,2)/(1)} = 24/5,$ $h_{(3\,2)/(2)} = 2,$ $h_{(3\,2)/(1^2)} = 3,$ $h_{(3\,2)/(3)} = 2,$ $h_{(3\,2)/(2\,1)} = 1,$ $h_{(3\,2)/(2\,2)} = 1,$ $h_{(3\,2)/(3\,2)} = 1.$

Hence,

$$\chi^{(3\,2)}_{(2\,1^3)} = -\frac{1}{24/5} + \frac{32}{6} + \frac{81}{12} - \frac{81}{3} + \frac{256}{12} - \frac{125}{24}$$

$$\pi_{\mu}(\rho) = -(\rho_1 + \rho_2)^3 (\rho_1^2 + \rho_2^2 - 2\rho_1 - 4\rho_2),$$

$$h_{(3\,2)} = 24,$$
 $h_{(3\,2)/(1)} = 24/5,$ $h_{(3\,2)/(2)} = 2,$ $h_{(3\,2)/(1^2)} = 3,$ $h_{(3\,2)/(3)} = 2,$ $h_{(3\,2)/(2\,1)} = 1,$ $h_{(3\,2)/(2\,2)} = 1,$ $h_{(3\,2)/(3\,2)} = 1.$

Hence,

$$\chi_{(2\,1^3)}^{(3\,2)} = -\frac{1}{24/5} + \frac{32}{6} + \frac{81}{12} - \frac{81}{3} + \frac{256}{12} - \frac{125}{24} = 1.$$