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Let a= (a)), i € Z, be a sequence of variables.
Denote by A, the ring of symmetric polynomials in x1, ..., X,

with coefficients in Q[a].
Consider the evaluation maps

k
<pn:/\,§kﬂl\§_1, P(X1,...,Xn) — P(Xq1,...,Xn_1,an)

and the corresponding inverse limit

ASK = IimASK, n— .
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The elements of ASK are sequences
P=(Py,Pi,Ps,...),  PneNhsk

such that

on(Pn) = Pp_y for n=1,2,....

Then the union A% = | J A is aring with the product
k>0

PQ = (PyQo, P1Qy, PoQo, . ..), Q=(Qy,Q1,Qs, ...

)
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Elements of A2 are called (double) symmetric functions.
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Examples. We have

n
ont Y (K —af) = Y (x —af)
i=1 '

hence

o0

pe(xlla) =) (x*—af) e A%,

i=1
the power sums symmetric function.
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Proposition.  The following are elements of AZ:
ex(xla)= > (x5 —ay)... (X — @jrk-1),
iy >0 >l

he(x|a) = Z (Xi1 - a/1) cee (Xik — Ajy—k+1 ).

it > Zi
They are called the elementary and complete symmetric
functions, respectively.

Proof.

> hk(x| a) t¢ 1 —at
1+ = .
2(1—aot)...(1—a_k+1t) I]‘__‘[‘I—X,'t
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unit boxes.

Example. The diagram A = (5,5,3) is

A =13 /N =3

The number of boxes is the weight of the diagram, denoted |A|.

The number of nonzero rows is its length, denoted ¢(\).
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A reverse A-tableau T is obtained by filling in the boxes of A
with the numbers 1,2, ... in such a way that the entries weakly
decrease along the rows and strictly decrease down the
columns. If o = (/,/) is a box of A we let T(«) = T(i,j) denote

the entry of T in the box a.

Example. A reverse \-tableau for A = (5,5, 3):

88422
413211
211]1
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Double Schur functions

For any diagram X define the (double) Schur function by

ssxlla) = T (ra) = ar(a)—o(a)):

T a€eX

summed over the reverse A\-tableaux T,

c(«) = j — i is the content of the box o = (i, ).

Proposition.

s\(x|a) € A2 for all diagrams .



Example. For A = (2, 1) the reverse tableaux are

ilil with i>j and i>k




Example. For A = (2, 1) the reverse tableaux are

ilil with i>j and i>k

Hence

sen(xla)= > (x—a)(X—a_)(X — ).

i>j, i>k
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Wehave  sy(x|a) = hu(xlla).  sum(x]a) = ex(x]a).

Indeed, the tableaux are

Uil o] e |k

Hence,
swxlla) = > (% —a).- (X — aj—k+1),
i1 22l

sam(xla) = > (% —a) .. (X, — Gjrk—1)-

1> >l
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Remark. The direct extension of the definition of s)(x| a) to
skew diagrams \/;. does not give an element of A4.

If A =(2) and i = (1), then we would have

[e.9]

sy (xla) =Y (X — ai1).

i=1

However, for n = 1,2, ... the polynomials

n

> (xi—aj)

i=1

are not consistent with respect to the evaluation maps x, := an.



For any partition A = (\1,...,\n) set
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For any partition A = (\1,...,\n) set

pa(x[a) = px (x[[@)- - - pr,(x] &),
ex(xl|a) = e (x]a)... e, (x]a),

hi(x[ &) = hx (x] &) h,(x] &).

Theorem. Each of the sets {p.\(x| @)}, {ex(x] @)}, {h\(x]a)}
and {s\(x| a)}, parameterized by the set P of all partitions A,

forms a basis of A2 over Q[a].
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Under the specialization a = (0) the ring A? becomes the ring A
of symmetric functions. It admits six distinguished bases,
parameterized by partitions:

{PA()}, {ex()}, {m ()}, {209}, {ma(x)} and {1 (x)}.
The my(x) and f,(x) are the monomial and forgotten symmetric
functions, respectively. We have

my(x) = X;\(11)X3\(22) . .xj("n),

summed over permutations o of the x; which give distinct

monomials.



There is an involution w : A — A such that
w : ex(x) — hy(x), hy(x) — ex(x),
m(x) — A(x), A(x) = my(x),
PA(X) = eapa(x),  ex= (1),
Sa(x) — sy (x),
where X' = (X}, ..., \};) and )} is the number of boxes in

column i of ).
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Questions.

» Are there analogues of my(x), f\(x) and s, /,(x) in A3?
» Is there an analogue of w on A?

» What are the transition matrices between the bases of A2?

Answers.
> Yes.
> Yes.

» Work in progress for {s\(x|a)} and {h\(x|a)} (Alex Fun).
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Main instrument: an analogue of the classical Cauchy identity

where y = (y1,Y2,...).

For A= (1™M2M .. . )set z,=[[>,i™m. Then

1 1
= — pa(x
5=y =2 zPp0)

AeP

and

1T-xy
1Y AEP AeP

I =S memy) =Y e hly).
ij



Cauchy identity

Theorem. We have the expansion

1 .y
[T+ = S sy (x| @) sa(y. a),
iJ

=Xy &
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Cauchy identity

Theorem. We have the expansion

—ajy;
1—x,y

=Y s\(x]a)s\(y,a),

AEP

where s)(y,a) isthe dual Schur function,

=Y 11 Y7 (a—cta)+1 @c(e)):

T aeX

summed over the reverse \-tableaux T with

yi(l—ay—1)...(1 —ay)
Y& = TGy @ by
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Examples.

_ : y, 31}’/ ) (1 —ay)

The dual elementary and complete symmetric functions are

ex(y.a) = sun(y.a),  h(y.a) = sy, a),
so that

= Y Yi(ar,a)Y(a a)... Yi(ak ak-1),

1> >l

h(y,a) = Z Yi(a1,a0)Yi(ao,a-1) ... Yi(a k2, @ ki1)

Iy 22l



Proposition. We have the expansions

1—8,‘}/]':
i 1—XY
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Proposition. We have the expansions

1— a;y; . 1
iy = 2 7 Pxlae)
I ep

and

H a’y’ =Y h(xlla) m(y, ),

1—
AEP



Proposition. We have the expansions

1-ay 1
I/ 2 P(x1)P()

—NY ep
and
a
H1_ ,y, =Y h(xla)mi(y.a).
AEP
where

)\.

yaf/)

my(y, ’
Ay.a) =) H (1= ao Vo)) --- (1 = @-x+1 Yo(i)

summed over permutations o of the y; which give distinct

monomials.
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For a partition A = (\q,..., Ap) set

hk(y’ a) = h)\1 (y’ a) oo hkn(yv a)’

ey, a) = e, (1, ). e, (¥, ).

The dual symmetric functions s\(y, a), ex(y, a), ha(y, a),
mx(y, a) are elements of the ring A2 of formal series of the
(usual) symmetric functions in y with coefficients in Q[a],

{ZCA )ymi(y) | ea(a )e@[a]}.

AeP
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The lowest degree components of

S/\(y’a)7 eA(yaa)’ hA(y,a), m)\(yva)

are respectively

S)\(y)’ e)\(y), h)\(y)s m)\(y)
Example.

[e.e]

siy.a) =Y (a0 —a) " myx(y.a)
k=1

= > (-1)%ag &) s (),
«,3>0

where («|f) is the hook diagram with arm « and leg §.
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Introduce the bases my (x| a) and f\(x | a) of A2 by

H1_a'yf S m(xla)m(y.a) = 3 hixla) ex(y. a).

XY \ep AP

Example. The monomial symmetric functions in AZ:
may(xlla) = (% — a),
i

mezy(x[@) = (% — a)(x; — aj41),

i>j



Introduce the bases my (x| a) and f\(x | a) of A2 by

H1_a'yf S m(xla)m(y.a) = 3 hixla) ex(y. a).

XiYp o Sep AEP

Example. The monomial symmetric functions in AZ:

may(xla) = > (x - a),

Mazy(x[a) =D (X — a)(X — a41),
i>]
Moy (x| a) = Z.:(Xi2 —a’) — (a0 + 31)Z(Xi — aj)

= ha(x||a) — ex(x] a).
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Pairing between AZ and A?

Define the bilinear pairing
< ) > : /\a®7\\a_)(@[a]7 <h)\(XHa)7mM(y7a)> :5>\p,'

Then the Cauchy identity implies

<S>\(X” a)v su(y, a)> = 6)\;u

<,0)\(XH a)7p,u(y)> = 5/\# Z).
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The skew Schur functions in A2 and A2 can now be defined

respectively by
(sy/u(x]@), sa(y,a)) = (su(x|a), sx(y,a)s.(y,a))
and

(sx(x]a), s,/.(y,a)) = (sa(x]|a)su(x]a), s.(y,a)).



The skew Schur functions in A2 and A2 can now be defined

respectively by

<Sv/u(x”a) S/\ y,a > <S X”a) S)\(.ya )Sﬂ(y?a)>

and

(sa(xlla), s,/u(y, @) = (sa(x]|@) su(x]a). su(ya)).

Example. We have

se)/m(xl18) = spy(xlla) =D _(xi — a).
i=1

2y, a Z Yi(ap,a-1)
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dual Littlewood—Richardson polynomials ¢y (a) by the
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Define the Littlewood—Richardson polynomials ¢y, (a) and the

dual Littlewood—Richardson polynomials ¢y} (a) by the

expansions
sxa(x] a)s.(x]a) = Z cy(a)s,(x|la)  (finite sum),
s\(y,a)su(y,a Z a)s,(y,a) (infinite series).
Then
S, /u(x] @) Z civ(a)sy(x||la)  (finite sum),

Su/u(y,a Zc,\u s\(y,a (infinite series).
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Interpolation approach

For any partition n introduce the sequence

a, = (a1—p; @y, ---)-

Given any element  P(x) € A, thevalue P(a,)is
a well-defined element of Q[a].

For instance,

o0

siy(@ulla) => (ai—y, — a) = lau| — |ag|.

i=1
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Universal interpolation formula.

For P(x) € A2 consider the expansion

P(x)s.(x] a) = Zcpus,,xua
Then
>CP”N:0unIess;;,gy,

> cp , = P(ay),

>

cH — ch |.
o | D e X e

p—pt v —v



Moreover,

/
P(a,w)

Ch, = P

i ZR:Z(|ap(k)|—|ap(0)!)---/\---(|ap(k)|—|ap(f>)7

k=0




Moreover,

/
P(a,w)

Ch, = P

i ;Z(|ap(k)|—|ap(0))---/\---(|3p(k)|—|ap(f>)7

k=0

summed over all sequences of partitions R of the form
p=p0 = pM .o 0= (D =y

p — o means o is obtained from p by adding one box.
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Example. The Littlewood—Richardson polynomials ¢y, (a) are

calculated by taking P(x) = s\(x| a).

Now apply the interpolation formula to

1—-ay
P(x) =
1;[,1—x,-yj

and use it to prove the generalized Cauchy identity

HWSM(XH&I)Z > si(xla)s,(y.a).

ij VEP, pCr
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Isomorphism w,

Define the new parameter sequence a’ by

(@)i=-a.iy1, €L,

sothat a’'=(...,—ap,—ay,—ap,—a_i,—ao,...).

Introduce the isomorphism w, : A2 — A2’ by

wa ex(x]a) — h(x] ).
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Theorem. We have w, =id and

w, =

wa: Sx(x[a) — sy(x]a’),
pa(xla) —eapa(x[a’),  ex = (=1,
my(x|a) — fi(x]a"),

hi(x|a) — ex(x]a").



Corollary. We have the identities

14X
H - = si(x|a)sv(y.a"),

1+ay AEP

H o > elxa)ym(y,a’),

1+ay;
i tay e

22 -5 2 pxlapmw)

ij 1+ay AeP

H o > ma(x|a)exy,a).

’/1+aiyj \EP
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Irreducible characters

Define the polynomials xﬁ(a) € QJa] by the expansion

pu(x|a) = qu sx(x] a).
Properties.

> M@ #0 onlyif |\ < |pl.
> Xﬁ(a) is homogeneous of degree || — |A|.

> (@) =xp i ful =\



Hence, if || = |\| = n, then, by the interpolation formula, the
values x;, of the irreducible character x* of the symmetric

group &, can be found by

X)\ B Z i pu(ap(k) ” a)
g " k1 (|ap(k>| - \ap<0)|) AR (|ap<k)\ - ’ap(n)\)7



Hence, if || = |\| = n, then, by the interpolation formula, the
values x;, of the irreducible character x* of the symmetric

group &, can be found by

pu(a,m | a)

ZZ (laml =12, - A (lam] —a,ml)’

R k=1

summed over all sequences R of partitions
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1

zﬁ:k:1 (laml = laml) - A (2w —laml)
R



X?ﬂ) = Z
R

(law| — lao)"

k=1

number of standard A-tableaux.

(la,ml = la,ml)--- A (lam| —

|@,m])
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Consider the specialization a; =i forall e Z.
For partitions . = (1™2™ .. .r™)and p = (p1,...,p;) Set

,
= TL( e

k=1

For any skew diagram 6 denote by dim# the number of

standard #-tableaux with entriesin  {1,2,....]0|]} and set

10]!
dimé’

hy =

If 6 is normal (non-skew), then hy is the product of hooks of 6.
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Corollary.  We have
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PCA hp Pz

Example. If A= (n)thenp=(k)fork=1,...,n and

=1.

(™ :Zn: (=) (1 =k —1) (1 = k) —1)

k=1 k! (n—k)!
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