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General linear Lie algebra

The Lie algebra gl has the basis of the standard matrix units
Ej with 1 < i,j < N so that dim gl = N2. The commutation
relations are

(Ejj, Exi] = 0kiEi — 0i1Ey;.

The universal enveloping algebra U(gly) is the associative

algebra with generators E; and the defining relations

E,'j Ey — Ex Eij = 5kjEil - 5ilEkj-
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The Casimir elements for gl are elements of Z(gly).
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Every finite-dimensional irreducible representation of gl
contains a unique (up to a scalar factor) nonzero

vector ¢ such that

E;j(=0 for 1<i<j<N, and
E,’,’CZ)\,‘C for 1<i<N.

for some complex numbers A1, ..., An.
Moreover, A\ — A1 €Z4 forall i=1,...,N—1.

This representation is denoted by L()\),
( is its highest vector and

A= (M,..., ) is its highest weight.
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Harish-Chandra isomorphism

Any Casimir element z € Z(gly) acts as the multiplication by a
scalar x(z) in L(X\). This scalar is a polynomial in A1, ..., An;

this polynomial is symmetric in the shifted variables

h=XM, b=X-—-1, ..., In=An-—-—N+1.

Themap  x:Z(gly) — Clh, ..., NSV in an algebra

isomorphism called the Harish-Chandra isomorphism.

Example. X:En++Enn— A+ AN
=h+--+In—NN-1)/2.
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Capelli determinant

Denote by E the N x N matrix whose jj-th entry is Ej.

If uis a complex variable, we set

u+E

u+ Eqq
Ezq

2P

u—+ E22




Let C(u) denote the Capelli determinant
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Let C(u) denote the Capelli determinant

Clu)y= > sgnp-(U+E)pay1-.-(U+E—N+1)pmn-
PESN

This is a polynomial in u with coefficients in the universal

enveloping algebra U(gly),

Clwy=uV+ciuN T+ 40y, CreUgly).



Example. For N = 2 we have

Clu)=(u+En)(u+ Ex—1) — Ez1 Ev2
= U2+(E11 + Eos — 1)U+E11 (E22—1)—E21 Eis.



Example. For N = 2 we have

C(u) = (u+ Ei1) (u+ Exn —1) — Ex1 Eqz
= 0P + (Ey1 + Exp — 1) U+ Eyq (Ezp — 1) — Epq Eq2.

Note that
Ct=E+Ex—1, Co=Ej1(Ex2—1)—ExEp2
are Casimir elements for gl, and

X(C1) =h + b,

X(C2) = h k.
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Theorem (C, HU).
The coefficients Cy, .. .,Cy belong to Z(gly)-
The image of C(u) under the Harish-Chandra isomorphism is
given by
X:Cu)— (u+h)...(u+In).
Hence, x(Ck) is the elementary symmetric polynomial of

degree kin Iy, ..., Iy,

X(Ck): Z Ii1"'lik'

Moreover, Z(gly) is the algebra of polynomials in Cy,...,Cp.
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1
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Hudson elements
Given any complex numbers ay, ..., ay, set
H(ay,. .., an)

1

= m Z sgnp-sgnq - (31 + E)p(1),q(1) ce (aN + E)p(N),q(N)-

pvqeeN
Remark. The definition goes back to R. Hudson (1974), and it

was re-discovered by M. Itoh and T. Umeda (2001).

Theorem (H, 1U).
The Capelli determinant can be written as

Cluy=H(u,u—1,....,.u—N+1).
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Gelfand invariants

These are the elements of U(gly) defined by

. E,

N
wE= Y E,E it >

2,'3 .
i1 7i27"'7ik:1

Example. For N =2 we have
tr E = Eqq + Epp,

tr E2 = E?, + Eyp Epy + Epy Eyp + E5.

Note that they are Casimir elements and
XtrE)=h+hb-1,

x(tr E2) = 12 412 + Iy + k.

k=0,1,....



Theorem (Newton’s formula). We have

1+§: (—1)ktr EX C(u+1).

= (u= N+ 1T C(u)



Theorem (Newton’s formula). We have

)k tr EX C(u+1)
1+Z u—N+1 T )

Proof.

This is equivalent to the Perelomov—Popov formulas

14
k=0

(— 1)K y(tr EX) _ﬁu+l,+1
(U*N+1)k+1 o U—|—/,' ’
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Noncommutative Cayley—Hamilton theorem

C(u) denotes the Capelli determinant for gl,.
Theorem (NT). We have

C(-E4+N-1)=0 and C(-E"=0.

Corollary (Characteristic identities of Bracken and Green).
The following identities hold for the image of the matrix E in the
representation L(\) of gly:

N N

[[CE-i-N+1)=0 and JJ(E'-H)=0.

i=1 i=1
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Noncommutative power sums

For each 1 < m < N consider the complete oriented graph with

the vertices 1,2, ..., m.

For each pair of vertices i,j € {1,..., m},

label the arrow from i to j by Ej — 6;(m —1).

Given a path in the graph, take the ordered product of the
labels of the arrows to get an element of U(gly) which we call

the label of the path.



Example. The complete oriented graph for m = 3:




For any positive integer k set

m_oy K
b = Z ¢ returns to m{label of the path},

summed over all paths in the graph from m to m of length k.



For any positive integer k set

U . S
b = Z ¢ returns to m{label of the path},

summed over all paths in the graph from m to m of length k.

Example.

m—1
O = (Eqm —m+12+2 " EniEim.

i=1



Theorem (GKLLRT). Forany k>1 the element
o = o) 1. 4oV
belongs to Z(gly). Moreover,
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Theorem (GKLLRT). Forany k>1 the element
o = o) 1. 4oV

belongs to Z(gly). Moreover,

X(@) = K+ I

Example.

N
O = (Emm—m+1),

m=1

N
®2=> (Emm—m+12+2 > EmEpm.

m=1 1<I<m<N



Orthogonal and symplectic Lie algebras



Orthogonal and symplectic Lie algebras

For N=2n or N =2n+ 1, respectively, set

ON = 02n+1, 5Pon, 02p.



Orthogonal and symplectic Lie algebras

For N=2n or N =2n+ 1, respectively, set

ON = 02n+1, 5Pon, 02p.

We will number the rows and columns of N x N matrices by the
indices {—n,...,—1,0,1,...,n}if N=2n+ 1, and by
{—=n,...;,=1,1,...,n}if N=2n.



Orthogonal and symplectic Lie algebras

For N=2n or N =2n+ 1, respectively, set

N = O2n41, 5Pon, 02p.

We will number the rows and columns of N x N matrices by the
indices {—n,...,—1,0,1,...,n}if N=2n+ 1, and by
{—=n,...;,=1,1,...,n}if N=2n.

The Lie algebra gy = oy is spanned by the elements

F,'j = E,j — E_j7_,', —n<ij<n



IN = 02n+1

-n++=-101-+--n —n e —1

—1
A= —A ! A= —A

Skew-symmetric matrices with respect to the second diagonal.



The Lie algebra gy = spy with N = 2nis spanned by the

elements
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The Lie algebra gy = spy with N = 2nis spanned by the
elements

Fjj=Ej—sgni-sgnj-E_;_;, —n< i, j<n.




For any n-tuple of complex numbers A\ = (\q,..., \p) the
corresponding irreducible highest weight representation V() of

gn is generated by a nonzero vector ¢ such that

Fi§=0 for —n<i<j<n, and

Fi & = X\€ for 1<i<n
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Any element z € Z(gy) of the center of U(gy) acts as a

multiplication by a scalar x(z) in V(X). This scalar is a

polynomial in A{,..., A\sp. Inthe B and C cases, this
polynomial is symmetric in the variables /2, ..., /2, where
li= i+ pi and
—i+1 for gn=o,,,
pi=—p-i=\—i+% for gn=o,,,,
—i for gn = sp,,,
fori=1,...,n. Also, po = 1/2in the case gy = 0,,,_ {-

In the D case x(z) is the sum of a symmetric polynomial in

I2,...,12and | ... I, times a symmetric polynomial in /2, ..., /2.



The map
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is an algebra isomorphism called the Harish-Chandra

isomorphism.



The map

X : Z(gn) — algebra of polynomials

is an algebra isomorphism called the Harish-Chandra

isomorphism.

Example. For gy = opn

n

Z ((me+Pm)2+2 Z FmiFim>

m=1 —m<i<m
is the second degree Casimir element. Its Harish-Chandra
image is

124+ 2.
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Capelli-type determinant for gy

Introduce a special map

/

on: 6N — By, p—p

from the symmetric group Gy into itself.

If N =2 we define ¢, as the map G, — &, whose image is the

identity permutation.

Given a set of positive integers a, < --- < a,, we regard Gy as

the group of their permutations.
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For N > 3 define a map from the set of ordered pairs

{(akaa/) | k # /}
into itself by the rule
(ak> al) = (ala ak)a k, I < N’

(@, an) — (an—_1, ak); k<N-1,

(an, ax) — (ak an_1); k<N-1,



For N > 3 define a map from the set of ordered pairs

{(akva/) | k # /}

into itself by the rule

(ak- a)) — (a, ay), k,I <N,
(ak> an) — (an—1, a). k<N-1,
(an: ax) — (ak> an—1) k<N-1,

(av—1:an) — (an_1; an_2);
(an:an—1) — (an_1; an_2)
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Let p = (py, ..., Py) be a permutation of the indices a,, ..., ay.

Its image under the map ¢y is the permutation of the form

p/ = (p1/a e 7p[/\/_1vaN)'

The pair (py, py,_4) is the image of the ordered pair (p;, py)

under the above map.

Then the pair (p;, py_») is found as the image of (p,, py_1)

under the above map, etc.
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Example.

p=(3,57,6,1,24).
(3,5,7,6,1,2,4) — (,%, %, %, %, %,7)
(3’ 57 7’ 67 1 ) 27 4) — (4’ *’ *’ *’ *7 37 7)
(8,5,7,6,1,2,4) — (4,2,%,%,5,3,7)

(3,5,7,6,1,2,4) — (4,2,1,6,5,3,7)

Thus, p/ =(4,2,1,6,5,3,7).
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Each fiber of the map ¢y is an interval in Sy with respect to the

Bruhat order, and this interval is isomorphic to a Boolean poset.

321 312 301

231 312 213 132

231
213 132 123

123 213 123
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Denote by F the N x N matrix whose jj-th entry is F;.

If uis a complex variable, we set

U+ F_n_n F_n—ns1 e F_nn

)

Fonit—n U+F_pni1_np1 o Foppan

Fn,—n Fn,fn+1 e U+ Fn,n_



Denote by F the N x N matrix whose jj-th entry is F;.

If uis a complex variable, we set

u+F_n_n F_n—nt1 e F_nn
an+1,fn u+ an+1,fn+1 R an+1,n
u+F=
| Fn-n Fn—n+1 oo U+ Fpp)
Note that
= — Fij in the orthogonal case,
7/77’ =

—sgni-sgnj- Fj in the symplectic case.



Introduce the Capelli-type determinant

C(u)=(-1)" Z sgnpp - (U+ p_n+ F)fbp(1)’bp’(1)
PESN

X x(Utpnt+F)p b,

P(N)* Zp’(N)



Introduce the Capelli-type determinant

C(u)=(—1)">" sgnpp’ - (U+p-n+F)p_ b

p(1) Pp/ (1)
PESN
X (Ut pnt F)fbp(N)’
where (b4, ..., by) is a fixed permutation of the indices

(—n,...,n) and p’ is the image of p under the map ¢y.



Theorem (M). The polynomial C(u) does not depend on the
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Theorem (M). The polynomial C(u) does not depend on the
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Theorem (M). The polynomial C(u) does not depend on the
choice of the permutation (bq,...,by).  All coefficients of C(u)
belong to Z(gn). Moreover, the image of C(u) under the
Harish-Chandra isomorphism is given by

n
x:Cw)— [ -7, if N=2n,
i=1

and

n
X :C(u) <u—|—%> [[w?-B), i N=2n+1.

i=1
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Example. For gy =o03 take (by, by, b3)=(—1,0,1).
Here p_1 = po = —p1 = 1/2, h =X —1/2,

C(U):(U+F_1,_1 +1/2)(u+1/2)(u+ F11 —1/2)
—Fo—1Fao(u+ F1—1/2)
— Fio (U+ F_q1 1 +1/2) For1.

Hence
C(u) = (u+1/2) (U - (Fi1 — 1/2)? — 2Fq Fo1)

and
x:Cu)— (u+1/2) (u2 — /12)
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Noncommutative Pfaffians and Hafnians

The Pfaffian Pf A of a 2k x 2k matrix A = [A;] is defined by

1
PfA = Kkl Z sgno - Ay(1),0(2) - - - As(2k—1),0(2k)-

[ SSI

If Ais a skew-symmetric numerical matrix, then

det A = (PfA)2.



Examples. We have



Examples. We have

Pf

0 As2
—Aqs 0
—Aiz —Ags

| —A1s —Axq

Pf
—Aiz
Az A
Az Aoy
0 Axn

= A12A34 — A13A24 + A14Az3.




Let gy = on.



Let gy = oy. Forany subset / of {—n, ..., n} containing 2k

elements i; < - -- < Iog, the submatrix

0 Fih—iz I:i1v_i2k
Fi, i 0 oo Py
F =
_Fizkﬁh Fizkﬁiz 0 i

is skew-symmetric.



Let gy = oy. Forany subset / of {—n, ..., n} containing 2k

elements i; < - -- < Iog, the submatrix

O FI'1,—I'2 Fih"ék
F o Fip,—iy 0 ... Fipi
_Fizkﬁh Fizkﬁiz 0 i
is skew-symmetric.
Set
Ck=(-1)-> PtF -PIF., I ={—ik,...,—i},
/

summed over all subsets / with |/| = 2k.
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Theorem (MN). Cy, ..., C, are Casimir elements for oy.
Moreover, the image of Cx under the Harish-Chandra
isomorphism is given by
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Theorem (MN). Cy, ..., C, are Casimir elements for oy.
Moreover, the image of Cx under the Harish-Chandra

isomorphism is given by

X:Ch (=1 Y (B=p8). (= pf _kie)-

1<y < <ig<n

Corollary.

C(u) 4 z”: Cx

(U+p-n)...(u+pn) = (U =P gq) - (U2 = ph)
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belongto {—n,...,n}.
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Denote by A, the 2k x 2k matrix whose (&, b) entry is A, .

The Hafnian Hf A, of the matrix A, is defined by

1
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o€Goy



Forany k > 1let I = {iy,..., ok} be a multiset whose elements
belongto {—n, ..., n}.
Denote by A, the 2k x 2k matrix whose (&, b) entry is A, .
The Hafnian Hf A, of the matrix A, is defined by
1
HfA = ok k| Z Aia(1)7io'(2) - 'Aia(qu),ia(zk)'

o€Goy

Remark. The term is due to Caianiello, '56. Hafnia is the Latin

name for “Copenhagen"; cf. Hafnium’?.



Let gy = spop.



Let gy = sps,. Let /= (iy < --- < o) be a sequence of

elements of the set {—n, ..., n}.



Let gy = sps,. Let /= (iy < --- < o) be a sequence of

elements of the set {—n,...,n}. Set Fj =sgni-Fj.



Let gy = spp,.  Let /= (iy < --- < ipx) be a sequence of

elements of the set {—n,...,n}. Set ﬁi/ = sgni-Fj.

The matrix
iy, —iy iy, —ip Fi17_i2k
F"277I.1 ng,*ig Fi2a7i2k
Fl =
_Fi2k:7i1 Fl'gk,fllg F"2k77II2k_

is symmetric.



Let gy = spop.  Let = (s < --- < k) be a sequence of

elements of the set {—n,...,n}. Set Fj =sgni-Fj.

The matrix
i, — iy i, —ip I:i1v—i2k
Fuch Face - o
Fl — 2,1 2,12 2, 2k
_Ffzkﬁﬁ Fizkﬁfz Fizkﬁfzk_
is symmetric. Set
- sgn (I1 e igk) * . .

/

where «; is the multiplicity of an element / in /.



Theorem (MN). For k > 1 the Dy are Casimir elements for sp,,,.



Theorem (MN). For k > 1 the Dy are Casimir elements for sp,,,.
Moreover, the image of D, under the Harish-Chandra
isomorphism is given by

XD (=1 YT (B=#).. (B = (k+k—1)).

1< < <hKn



Theorem (MN). For k > 1 the Dy are Casimir elements for sp,,,.
Moreover, the image of D, under the Harish-Chandra

isomorphism is given by

XD (=1 YT (B=#).. (B = (k+k—1)).

1< < <hKn

Corollary.

C(u) -
((u + p_n) U (u+ pn))
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Yangians

Recall that E = [Ej] with /,j € {1,..., N}.
We have

[Ejjs (E®)ia] = 0ki(E®)ir — 0u(E®)ig.

This implies that tr E° are Casimir elements for gly

(the Gelfand invariants).



Yangians

Recall that E = [Ej] with /,j € {1,..., N}.
We have

[Ejjs (E®)ia] = 0ki(E®)ir — 0u(E®)ig.

This implies that tr E° are Casimir elements for gly
(the Gelfand invariants).

More generally, we have
[(E™)ii (ES)ia] = [(ENj, (B Yi] = (ENiG(E®)a—(E®)ii(E i,

where r,s > 0 and E° = 1 is the identity matrix.



Yangian for gly



Yangian for gly

Definition
The Yangian for gl is the associative algebra over C with
countably many generators t,ﬁ”, t,./(.z), ... wherei,j=1,...,N,

and the defining relations

1 1
[0 691 = 17,6501 = 04 — 691,

where r,s=0,1,... and téo) = 0jj.



Yangian for gly

Definition
The Yangian for gl is the associative algebra over C with
countably many generators t,ﬁ”, t,./(.z), ... wherei,j=1,...,N,

and the defining relations
1 1
[0 691 = 17,6501 = 04 — 691,

where r,s=0,1,... and téo) = 0jj.

This algebra is denoted by Y(gly).



Introduce the formal generating series

t//(u) = 5/] + ti5-1)U71 -+ tij(‘z)u72 + ... Y(Q[N)[[U71]]



Introduce the formal generating series

t//(u) = 5/] + ti5-1)U71 + t§2)u*2 + ... Y(Q[N)[[U71]]

The defining relations take the form

(U — V) [t,'j(U), fk/(V)] = fkj(U) t,'/(V) — tkj(V) tj/(U).



Introduce the formal generating series

() = 3+ 4 4 (PP e @)l

The defining relations take the form

(U — V) [t,'j(U), fk/(V)] = fkj(U) t,'/(V) — tkj(V) tj/(U).

The defining relations are also equivalent to

min{r,s}

[tgr Jk/ ]7 Z (tl(;z 1)t/(/r+s a) t/(qr+s a)t(a 1))_

a=1



Evaluation homomorphism

Proposition. The assignment

N Gi(u) = 0+ E,‘jUf1

defines a surjective homomorphism Y(gly) — U(gly).



Evaluation homomorphism

Proposition. The assignment

N Gi(u) = 0+ E,-/Uf1

defines a surjective homomorphism Y(gly) — U(gly).

Moreover, the assignment

E,'/' — t§-1)

[/

defines an embedding U(gly) — Y(gln)-



Evaluation homomorphism

Proposition. The assignment

N Gi(u) = 0+ E,-/Uf1

defines a surjective homomorphism Y(gly) — U(gly).

Moreover, the assignment

E,'/' — t§-1)

[/

defines an embedding U(gly) — Y(gln)-

Hence, we may regard U(gly) as a subalgebra of Y(gly).
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Matrix form of the defining relations

Introduce the N x N matrix T(u) whose jj-th entry is the series

ti(u).



Matrix form of the defining relations

Introduce the N x N matrix T(u) whose jj-th entry is the series
tj(u). We regard T(u) as an element of the algebra
End CN @ Y(giy)[[u~"]):

N
T(u)=>_ e tj(u),

ij=1

where e; € End CV are the standard matrix units.



For any positive integer m consider the algebra

EndCV @ --- @ EndCN @ Y(gly).

m




For any positive integer m consider the algebra

EndCV @ --- @ EndCN @ Y(gly).

m

Forany ac€ {1,..., m} denote by T,(u) the matrix T(u) which
corresponds to the a-th copy of the algebra End CV in the

tensor product algebra.



For any positive integer m consider the algebra

EndCV @ --- @ EndCN @ Y(gly).

m

Forany ac€ {1,..., m} denote by T,(u) the matrix T(u) which
corresponds to the a-th copy of the algebra End CV in the
tensor product algebra. That is, T,(u) is a formal power series

in u~" given by

Z1® 210l - 01 tu),
—_———

ij=1 a—1 m—a

where 1 is the identity matrix.



Similarly, if

N
C = Z Cijk/ €jj ® ey € End(CN &® End(CN,
ik I=1



Similarly, if

N
C = Z Cijk/ €jj ® ey € End(CN &® End(CN,
ik I=1

then for any two indices a, b € {1,..., m} such that a < b,
define the element C,p, of the algebra (End CN)®™ by

N
Cab:”;10,']7(/1®"'®1®ejj®1®"'®1®ek/®1®"'®1.
1,],K,1= a—1 b—a—1 m—b



Consider now the permutation operator

N
P=> ej®e;cEndCN@EndC".
i7j:1



Consider now the permutation operator

N
P=> ej®e;cEndCN@EndC".
ij=1
The rational function

R(u)=1—Pu™"

with values in End CN @ End CV is called the Yang R-matrix.



Proposition. We have the identity

R12(U) R13(U + V) R23(V) = R23(V) R13(U + V) R12(U).



Proposition. We have the identity

R12(U) R13(U + V) R23(V) = R23(V) R13(U + V) R12(U).

This relation is known as the Yang—Baxter equation. The Yang

R-matrix is its simplest nontrivial solution.



Proposition. The defining relations of the algebra Y(gly) can be

written in the equivalent form

R(u—v) T1(u) To(v) = Ta(v) T1(u) R(u — v).



Proposition. The defining relations of the algebra Y(gly) can be

written in the equivalent form

R(u—v) T1(u) To(v) = Ta(v) T1(u) R(u — v).

Here Ty(u) and T»(v) as formal power series with the

coefficients in the algebra

EndCN @ EndCN @ Y(glp).



Proposition. The defining relations of the algebra Y(gly) can be

written in the equivalent form

R(u—v) T1(u) To(v) = Ta(v) T1(u) R(u — v).

Here Ty(u) and T»(v) as formal power series with the

coefficients in the algebra

EndCN @ EndCN @ Y(glp).

The matrix relation is called the RTT relation

(or ternary relation).



Quantum determinant



Quantum determinant

For any m > 2 introduce the rational function R(uy, . .., un) with

values in the tensor product algebra (End CN)®™ by
R(u1,...,um) = (Rm-1,m)(Rm—2,mBm-2,m-1) - - - (Rim - .. R12),
where uy, ..., Uy are independent complex variables and

Rj = Rj(ui — uj) =1 — Py(u; — u)) ™.



Applying the RTT relation repeatedly,

we come to the fundamental relation

R(uq,....um) T1(u1) ... Tm(um) = Tm(um) ... T1(uq) R(uy, ..., Um).



Applying the RTT relation repeatedly,

we come to the fundamental relation

R(uq,....um) T1(u1) ... Tm(um) = Tm(um) ... T1(uq) R(uy, ..., Um).

Lemma (Jucys). Ifu; — uj.q =1foralli=1,...,m—1then
R(U'],,Um) :Am,

the image of the anti-symmetrizer s sgnp-p € C[Sp]
in the algebra End (CN)®™.



Hence, taking m = N we get

ANT1(U)...TN(U—N—|—1): TN(U—N+1)...T1(U)AN.



Hence, taking m = N we get

ANT1(U)...TN(U—N+1): TN(U—N+1)...T1(U)AN.

The operator Ay on (CV)®N is one-dimensional.



Hence, taking m = N we get

ANT1(U)...TN(U—N—|—1): TN(U—N+1)...T1(U)AN.

The operator Ay on (CV)®N is one-dimensional.

Definition
The quantum determinant of the matrix T(u) with the

coefficients in Y(gly) is the formal series
qdet T(u) =1+ dyu ' + dbu 2+ . ..

such that both sides of the above relation are equal to
An qdet T(u).



We have

qdet T(u) = Z sgn P - bo1),1(U) - - vy, n(U — N+ 1)
pESnN

— Z sgnp - t1,p(1)(U — N+ 1) . tN,p(N)(U)‘
pEGN



We have

qdet T(u) = Z sgn P - bo1),1(U) - - vy, n(U — N+ 1)
pESnN

— Z sgnp - t1,p(1)(U — N+ 1) . tN,p(N)(U)‘
pEGN

Example. For N = 2 we have

qdet T( ) U) oo

b (U) too(u — 1) — t1 (u) tra(u — 1)
=to(u)ti1(u—1) — tia(U) by (u—1)
(U= 1) toa(u) — tia(u — 1) 21 ()
toa(u = 1) t11(U) — 21 (U — 1) tr2(u)



Center of Y(gly)



Center of Y(gly)

Theorem (KS). The coefficients d;, db, ... of the series

qdet T(u) belong to the center ZY(gly) of the algebra Y(gly).
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Theorem (KS). The coefficients dj, do, . .. of the series
qdet T(u) belong to the center ZY(gly) of the algebra Y(gly).
Moreover, these elements are algebraically independent and

generate ZY(gly).



Center of Y(gly)

Theorem (KS). The coefficients dj, do, . .. of the series
qdet T(u) belong to the center ZY(gly) of the algebra Y(gly).
Moreover, these elements are algebraically independent and

generate ZY(gly).
Note that

Cluy=u(u—1)...(u—N+1)ay(qdet T(u)).



Center of Y(gly)

Theorem (KS). The coefficients dj, do, . .. of the series
qdet T(u) belong to the center ZY(gly) of the algebra Y(gly).
Moreover, these elements are algebraically independent and

generate ZY(gly).
Note that

Cluy=u(u—1)...(u—N+1)ay(qdet T(u)).

Corollary. All coefficients of C(u) are Casimir elements for gl.



Quantum Liouville formula



Quantum Liouville formula

Consider the series z(u) with coefficients from Y(gly) given by
the formula

z(u) " = 1Ntr (T T (w-N)),
so that

zZ(W)=1+2u2+zu3+... where z € Y(gly).



Quantum Liouville formula

Consider the series z(u) with coefficients from Y(gly) given by

the formula
’
1 _ 1 10,
2(u)" = o (T(W) T (= N)),
so that
zZ(W)=1+2u2+zu3+... where z € Y(gly).

Theorem (N). We have the relation

~qdetT(u—1)
2(u) = qdet T(u)



Application to gl



Application to gl
Recall the evaluation homomorphism 7y : T(u) +— 1+ Eu~":

i Z(-u+ N e 1Ntr ((1 ~E(u-N)"(1 - Eu—1)—1)

_ 1 - k , —k
=1 LI—NKZ_;U-EU .



Application to gl
Recall the evaluation homomorphism 7y : T(u) +— 1+ Eu~":

v Z(—u+ N) e 1Ntr ((1 ~E(u-N)"(1 - Eu—‘)—1)

_ T Nk k

The quantum Liouville formula gives

-1 _ qdet T(U+ 1)
2u+1)" = qdet T(u)

Applying the evaluation homomorphism to both sides of this

relation, we get Newton’s formula.



Twisted Yangians



Twisted Yangians

Consider the orthogonal Lie algebra oy as the subalgebra of
gln spanned by the skew-symmetric matrices. The elements
Fjj = Ej — Ej with i < j form a basis of oy. Introduce the N x N

matrix F whose jj-th entry is Fj.



Twisted Yangians

Consider the orthogonal Lie algebra oy as the subalgebra of
gln spanned by the skew-symmetric matrices. The elements
Fjj = Ej — Ej with i < j form a basis of oy. Introduce the N x N

matrix F whose jj-th entry is Fj.

The matrix elements of the powers of the matrix F are known to

satisfy the relations

[Fijs (F %) i) = 0ii(F )it — 6i(F®)ig — 0ix(F %) + 65(F ®)a-



Introduce the generating series

fi(u) = o5+ > (F v+ /\/2_1)4'

r=1



Introduce the generating series
> N —1\-r
fy(u) = o5+ Y (Fy(u+=—5—) -

r=1

Then we have the relations

(u? = v®) [f(u), fu(V)] = (U + V) (fig(u) fi(v) = fig(v) fy(w))
— (u—v) (fix(u) fo(v) = f(v) f(W))
+ fi(u) fi(v) — fi(v) fi(u).



Introduce the generating series
> N —1\-r
fy(u) = o5+ Y (Fy(u+=—5—) -

r=1

Then we have the relations

(u? = v®) [f(u), fu(V)] = (U + V) (fig(u) fi(v) = fig(v) fy(w))
— (u—v) (fix(u) fo(v) = f(v) f(W))
+ fi(u) fi(v) — fi(v) fi(u).

Let G = [g;] be a nonsingular (skew-)symmetric matrix.



The twisted Yangian Y(gn) is an associative algebra with

generators s,(j ), ,52)7 ... where 1 < /,j < N, and the defining

relations written in terms of the generating series

(2) U2

si(u) = gj+ s u + sPuP 4



The twisted Yangian Y(gn) is an associative algebra with

generators s,(j ), ,52)7 ... where 1 < /,j < N, and the defining
relations written in terms of the generating series

(2) U2

si(u) = gj+ s u + sPuP 4

as follows
(U2 = v®) [s(u), sk(v)] = (U + v) (sk(u)si(v) — ski(v)si(u))

— (u—v) (sik(u)sj(v) — ski(v)sj(u))

+ ski(U)sj(v) — ski(v)si(u)



The twisted Yangian Y(gn) is an associative algebra with

generators s,(j ), ,52)7 ... where 1 < /,j < N, and the defining
relations written in terms of the generating series

(2) U2

si(u) = gj+ s u + sPuP 4

as follows
(U2 = v®) [s(u), sk(v)] = (U + v) (sk(u)si(v) — ski(v)si(u))

— (u—v) (sik(u)sj(v) — ski(v)sj(u))

+ ski(U)sj(v) — ski(v)si(u)

and

sj(u) — Sij(_u)‘

S/','(—U) =+ S,'/'(U) + 50



Matrix form of the defining relations



Matrix form of the defining relations

Introduce the N x N matrix S(u) by

Ze,,@s,, u) € EndCN @ Y(gn)[[u™"]]
ij=1



Matrix form of the defining relations

Introduce the N x N matrix S(u) by

Ze,,@s,, u) € EndCN @ Y(gn)[[u™"]]
ij=1

The defining relations of Y(gn) have the form

R(u—v) Si(u) R!(—u—v) Sa(v) = So(v) R!(—u—v) Sy(u) R(u—v)



Matrix form of the defining relations

Introduce the N x N matrix S(u) by

Ze,,@s,, u) € EndCN @ Y(gn)[[u™"]]
ij=1

The defining relations of Y(gn) have the form
R(u—v) Si(u) R!(—u—v) Sa(v) = So(v) R!(—u—v) Sy(u) R(u—v)

and
S(u) — S(-v)

St(—u) =+ S(u) + o



Here
R(u)=1— Pu™"

is the Yang R-matrix, while

N
Riluy=1-Qu', Q=) eguwoe;
ij=1



Here
R(u)=1-Pu"

is the Yang R-matrix, while

N
Riluy=1-Qu', Q=) eguwoe;
ij=1

The mapping
S(u) — T(u) GTY(~u)

defines an embedding Y(gn) — Y(gln)-



Sklyanin determinant



Sklyanin determinant

The Sklyanin determinant is a series in u~" defined by
sdet S(U) = 7y, g(u) qdet T(u) qdet T(—u+ N — 1),
where

detG if gN = ON,

Yng(l) =
na 2+ 1

—_— if = .
5u_2n+1 detG it gn =spop



Sklyanin determinant

The Sklyanin determinant is a series in u~" defined by
sdet S(U) = 7y, g(u) qdet T(u) qdet T(—u+ N — 1),
where

det G if gN = ON,

Tna(U) =
na 2+ 1

m det G if aN = 5p2n.

All coefficients of sdet S(u) are contained in Y(gx) and belong

to the center of Y(gn).



Introduce the scalar v,(u) by

1 if gN = ON,
Tn(U) = 2u + 1

- i =



Introduce the scalar v,(u) by

1 if gN = ON,
Tn(U) = 2u + 1

- i =

Theorem (M). We have

sdet S(u)

= ’Yn(u) Z Sgnpp/ . 35(1)’p/(1)(—u) e S[i(n),p’(n)(_u + n— 1)
pEGN

X Sp(n1),p/ () (U = 1) - Spy iy (U = N A1),



Examples. For N = 2 we have

et S(u) = 120 (st () Spp(u — 1) — by (~0) 515(u — 1)),



Examples. For N = 2 we have

et S(u) = 120 (st () Spp(u — 1) — by (~0) 515(u — 1)),

If N=3 then sdetS(u)=

Spp(—U) 811 (U — 1) S33(U — 2) + 5{p(— 1) Sg¢ (U — 1) Sp3(U — 2)
+ 851(—U) Sga(U — 1) 813(U — 2) — 5{p(—) Sy (U — 1) Sz3(U — 2)

— S32(—U) 514(U — 1) Spa(U — 2) — 831 (—U) Spp(U — 1) S13(U — 2).



