Casimir elements and Yangians

Alexander Molev

University of Sydney

Classical Lie algebras over $\ensuremath{\mathbb{C}}$

Classical Lie algebras over C

A type: special linear Lie algebra \mathfrak{sl}_N general linear Lie algebra \mathfrak{gl}_N

Classical Lie algebras over C

A type: special linear Lie algebra \mathfrak{sl}_N

general linear Lie algebra \mathfrak{gl}_N

B type: orthogonal Lie algebra \mathfrak{o}_{2n+1}

Classical Lie algebras over ℂ

A type: special linear Lie algebra \mathfrak{sl}_N

general linear Lie algebra \mathfrak{gl}_N

B type: orthogonal Lie algebra \mathfrak{o}_{2n+1}

C type: symplectic Lie algebra \mathfrak{sp}_{2n}

Classical Lie algebras over $\mathbb C$

A type: special linear Lie algebra \mathfrak{sl}_N

general linear Lie algebra \mathfrak{gl}_N

B type: orthogonal Lie algebra \mathfrak{o}_{2n+1}

C type: symplectic Lie algebra \mathfrak{sp}_{2n}

D type: orthogonal Lie algebra \mathfrak{o}_{2n}

General linear Lie algebra

General linear Lie algebra

The Lie algebra \mathfrak{gl}_N has the basis of the standard matrix units E_{ij} with $1 \le i, j \le N$ so that dim $\mathfrak{gl}_N = N^2$. The commutation relations are

$$[E_{ij}, E_{kl}] = \delta_{kj} E_{il} - \delta_{il} E_{kj}.$$

General linear Lie algebra

The Lie algebra \mathfrak{gl}_N has the basis of the standard matrix units E_{ij} with $1 \le i, j \le N$ so that dim $\mathfrak{gl}_N = N^2$. The commutation relations are

$$[E_{ij}, E_{kl}] = \delta_{kj} E_{il} - \delta_{il} E_{kj}.$$

The universal enveloping algebra $U(\mathfrak{gl}_N)$ is the associative algebra with generators E_{ij} and the defining relations

$$E_{ij} E_{kl} - E_{kl} E_{ij} = \delta_{kj} E_{il} - \delta_{il} E_{kj}.$$

By the Poincaré–Birkhoff–Witt theorem, given any ordering on the set of generators $\{E_{ij}\}$, any element of $U(\mathfrak{gl}_N)$ can be uniquely written as a linear combination of the ordered monomials in the E_{ii} .

By the Poincaré–Birkhoff–Witt theorem, given any ordering on the set of generators $\{E_{ij}\}$, any element of $U(\mathfrak{gl}_N)$ can be uniquely written as a linear combination of the ordered monomials in the E_{ii} .

The center $Z(\mathfrak{gl}_N)$ of $U(\mathfrak{gl}_N)$ is

$$Z(\mathfrak{gl}_N) = \{ z \in U(\mathfrak{gl}_N) \mid z x = x z \text{ for all } x \in U(\mathfrak{gl}_N) \}.$$

By the Poincaré–Birkhoff–Witt theorem, given any ordering on the set of generators $\{E_{ij}\}$, any element of $\mathrm{U}(\mathfrak{gl}_N)$ can be uniquely written as a linear combination of the ordered monomials in the E_{ij} .

The center $Z(\mathfrak{gl}_N)$ of $U(\mathfrak{gl}_N)$ is

$$Z(\mathfrak{gl}_N) = \{ z \in U(\mathfrak{gl}_N) \mid z x = x z \text{ for all } x \in U(\mathfrak{gl}_N) \}.$$

The Casimir elements for \mathfrak{gl}_N are elements of $Z(\mathfrak{gl}_N)$.

$$E_{ij} \zeta = 0$$
 for $1 \leqslant i < j \leqslant N$, and $E_{ii} \zeta = \lambda_i \zeta$ for $1 \leqslant i \leqslant N$.

for some complex numbers $\lambda_1, \ldots, \lambda_N$.

$$E_{ij} \zeta = 0$$
 for $1 \leqslant i < j \leqslant N$, and $E_{ii} \zeta = \lambda_i \zeta$ for $1 \leqslant i \leqslant N$.

for some complex numbers $\lambda_1, \ldots, \lambda_N$.

Moreover,
$$\lambda_i - \lambda_{i+1} \in \mathbb{Z}_+$$
 for all $i = 1, ..., N-1$.

$$E_{ij} \zeta = 0$$
 for $1 \leqslant i < j \leqslant N$, and $E_{ii} \zeta = \lambda_i \zeta$ for $1 \leqslant i \leqslant N$.

for some complex numbers $\lambda_1, \ldots, \lambda_N$.

Moreover,
$$\lambda_i - \lambda_{i+1} \in \mathbb{Z}_+$$
 for all $i = 1, ..., N-1$.

This representation is denoted by $L(\lambda)$, ζ is its highest vector and $\lambda = (\lambda_1, \dots, \lambda_N)$ is its highest weight.

Any Casimir element $z \in \mathbb{Z}(\mathfrak{gl}_N)$ acts as the multiplication by a scalar $\chi(z)$ in $L(\lambda)$.

Any Casimir element $z \in Z(\mathfrak{gl}_N)$ acts as the multiplication by a scalar $\chi(z)$ in $L(\lambda)$. This scalar is a polynomial in $\lambda_1, \ldots, \lambda_N$;

Any Casimir element $z \in Z(\mathfrak{gl}_N)$ acts as the multiplication by a scalar $\chi(z)$ in $L(\lambda)$. This scalar is a polynomial in $\lambda_1, \ldots, \lambda_N$; this polynomial is symmetric in the shifted variables

$$I_1=\lambda_1,\quad I_2=\lambda_2-1,\quad \dots,\quad I_N=\lambda_N-N+1.$$

Any Casimir element $z \in Z(\mathfrak{gl}_N)$ acts as the multiplication by a scalar $\chi(z)$ in $L(\lambda)$. This scalar is a polynomial in $\lambda_1, \ldots, \lambda_N$; this polynomial is symmetric in the shifted variables

$$I_1=\lambda_1,\quad I_2=\lambda_2-1,\quad \dots,\quad I_N=\lambda_N-N+1.$$

The map $\chi: Z(\mathfrak{gl}_N) \to \mathbb{C}[I_1, \dots, I_N]^{\mathfrak{S}_N}$ in an algebra isomorphism called the Harish-Chandra isomorphism.

Any Casimir element $z \in Z(\mathfrak{gl}_N)$ acts as the multiplication by a scalar $\chi(z)$ in $L(\lambda)$. This scalar is a polynomial in $\lambda_1, \ldots, \lambda_N$; this polynomial is symmetric in the shifted variables

$$I_1 = \lambda_1, \quad I_2 = \lambda_2 - 1, \quad \dots, \quad I_N = \lambda_N - N + 1.$$

The map $\chi: Z(\mathfrak{gl}_N) \to \mathbb{C}[I_1, \dots, I_N]^{\mathfrak{S}_N}$ in an algebra isomorphism called the Harish-Chandra isomorphism.

Example.
$$\chi: E_{11} + \cdots + E_{NN} \mapsto \lambda_1 + \cdots + \lambda_N$$

= $I_1 + \cdots + I_N - N(N-1)/2$.

Capelli determinant

Capelli determinant

Denote by E the $N \times N$ matrix whose ij-th entry is E_{ij} .

Capelli determinant

Denote by E the $N \times N$ matrix whose ij-th entry is E_{ij} . If u is a complex variable, we set

$$u + E = \begin{bmatrix} u + E_{11} & E_{12} & \dots & E_{1N} \\ E_{21} & u + E_{22} & \dots & E_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ E_{N1} & E_{N2} & \dots & u + E_{NN} \end{bmatrix}.$$

Let C(u) denote the Capelli determinant

$$\mathcal{C}(u) = \sum_{p \in \mathfrak{S}_N} \operatorname{sgn} p \cdot (u + E)_{p(1),1} \dots (u + E - N + 1)_{p(N),N}.$$

Let C(u) denote the Capelli determinant

$$C(u) = \sum_{p \in \mathfrak{S}_N} \operatorname{sgn} p \cdot (u + E)_{p(1),1} \dots (u + E - N + 1)_{p(N),N}.$$

This is a polynomial in u with coefficients in the universal enveloping algebra $U(\mathfrak{gl}_N)$,

$$C(u) = u^N + C_1 u^{N-1} + \cdots + C_N, \qquad C_i \in U(\mathfrak{gl}_N).$$

Example. For N = 2 we have

$$C(u) = (u + E_{11})(u + E_{22} - 1) - E_{21}E_{12}$$
$$= u^2 + (E_{11} + E_{22} - 1)u + E_{11}(E_{22} - 1) - E_{21}E_{12}.$$

Example. For N = 2 we have

$$C(u) = (u + E_{11})(u + E_{22} - 1) - E_{21} E_{12}$$
$$= u^2 + (E_{11} + E_{22} - 1)u + E_{11}(E_{22} - 1) - E_{21} E_{12}.$$

Note that

$$C_1 = E_{11} + E_{22} - 1,$$
 $C_2 = E_{11} (E_{22} - 1) - E_{21} E_{12}$

are Casimir elements for gl2 and

$$\chi(\mathcal{C}_1) = I_1 + I_2,$$

$$\chi(\mathcal{C}_2) = I_1 I_2.$$

The coefficients C_1, \ldots, C_N belong to $Z(\mathfrak{gl}_N)$.

The coefficients C_1, \ldots, C_N belong to $Z(\mathfrak{gl}_N)$.

The image of $\mathcal{C}(u)$ under the Harish-Chandra isomorphism is given by

$$\chi: \mathcal{C}(u) \mapsto (u+I_1)\dots(u+I_N).$$

The coefficients C_1, \ldots, C_N belong to $Z(\mathfrak{gl}_N)$.

The image of $\mathcal{C}(u)$ under the Harish-Chandra isomorphism is given by

$$\chi: \mathcal{C}(u) \mapsto (u+l_1)\dots(u+l_N).$$

Hence, $\chi(C_k)$ is the elementary symmetric polynomial of degree k in I_1, \ldots, I_N ,

$$\chi(\mathcal{C}_k) = \sum_{i_1 < \dots < i_k} I_{i_1} \dots I_{i_k}.$$

The coefficients C_1, \ldots, C_N belong to $Z(\mathfrak{gl}_N)$.

The image of $\mathcal{C}(u)$ under the Harish-Chandra isomorphism is given by

$$\chi: \mathcal{C}(u) \mapsto (u+l_1)\dots(u+l_N).$$

Hence, $\chi(C_k)$ is the elementary symmetric polynomial of degree k in I_1, \ldots, I_N ,

$$\chi(\mathcal{C}_k) = \sum_{i_1 < \dots < i_k} I_{i_1} \dots I_{i_k}.$$

Moreover, $Z(\mathfrak{gl}_N)$ is the algebra of polynomials in $\mathcal{C}_1, \ldots, \mathcal{C}_N$.

Hudson elements

Hudson elements

Given any complex numbers a_1, \ldots, a_N , set

$$H(a_1,\ldots,a_N) = \frac{1}{N!} \sum_{p,q \in \mathfrak{S}_N} \operatorname{sgn} p \cdot \operatorname{sgn} q \cdot (a_1 + E)_{p(1),q(1)} \ldots (a_N + E)_{p(N),q(N)}.$$

Hudson elements

Given any complex numbers a_1, \ldots, a_N , set

$$H(a_1,\ldots,a_N) = \frac{1}{N!} \sum_{p,q \in \mathfrak{S}_N} \operatorname{sgn} p \cdot \operatorname{sgn} q \cdot (a_1 + E)_{p(1),q(1)} \ldots (a_N + E)_{p(N),q(N)}.$$

Remark. The definition goes back to R. Hudson (1974), and it was re-discovered by M. Itoh and T. Umeda (2001).

Hudson elements

Given any complex numbers a_1, \ldots, a_N , set

$$H(a_1,\ldots,a_N)$$

$$= \frac{1}{N!} \sum_{p,q \in \mathfrak{S}_N} \operatorname{sgn} p \cdot \operatorname{sgn} q \cdot (a_1 + E)_{p(1),q(1)} \ldots (a_N + E)_{p(N),q(N)}.$$

Remark. The definition goes back to R. Hudson (1974), and it was re-discovered by M. Itoh and T. Umeda (2001).

Theorem (H, IU).

The Capelli determinant can be written as

$$C(u) = H(u, u - 1, ..., u - N + 1).$$

These are the elements of $U(\mathfrak{gl}_N)$ defined by

$$\operatorname{tr} E^k = \sum_{i_1,i_2,\dots,i_k=1}^N E_{i_1i_2} E_{i_2i_3} \dots E_{i_ki_1}, \qquad k = 0, 1, \dots.$$

These are the elements of $U(\mathfrak{gl}_N)$ defined by

$$\operatorname{tr} E^k = \sum_{i_1,i_2,\dots,i_k=1}^N E_{i_1i_2} \, E_{i_2i_3} \dots E_{i_ki_1}, \qquad k=0,1,\dots.$$

Example. For N = 2 we have

$$\begin{split} & \text{tr}\,E=E_{11}+E_{22},\\ & \text{tr}\,E^2=E_{11}^2+E_{12}\,E_{21}+E_{21}\,E_{12}+E_{22}^2. \end{split}$$

These are the elements of $U(\mathfrak{gl}_N)$ defined by

$$\operatorname{tr} E^k = \sum_{i_1,i_2,\ldots,i_k=1}^N E_{i_1i_2} E_{i_2i_3} \ldots E_{i_ki_1}, \qquad k = 0, 1, \ldots.$$

Example. For N = 2 we have

$$\operatorname{tr} E = E_{11} + E_{22},$$

$$\operatorname{tr} E^2 = E_{11}^2 + E_{12} E_{21} + E_{21} E_{12} + E_{22}^2.$$

Note that they are Casimir elements and

$$\chi(\operatorname{tr} E) = I_1 + I_2 - 1,$$

$$\chi(\operatorname{tr} E^2) = I_1^2 + I_2^2 + I_1 + I_2.$$

Theorem (Newton's formula). We have

$$1 + \sum_{k=0}^{\infty} \frac{(-1)^k \operatorname{tr} E^k}{(u - N + 1)^{k+1}} = \frac{\mathcal{C}(u + 1)}{\mathcal{C}(u)}.$$

Theorem (Newton's formula). We have

$$1 + \sum_{k=0}^{\infty} \frac{(-1)^k \operatorname{tr} E^k}{(u-N+1)^{k+1}} = \frac{\mathcal{C}(u+1)}{\mathcal{C}(u)}.$$

Proof.

This is equivalent to the Perelomov-Popov formulas

$$1 + \sum_{k=0}^{\infty} \frac{(-1)^k \chi(\operatorname{tr} E^k)}{(u-N+1)^{k+1}} = \prod_{i=1}^{N} \frac{u+l_i+1}{u+l_i}.$$

Noncommutative Cayley-Hamilton theorem

Noncommutative Cayley–Hamilton theorem

C(u) denotes the Capelli determinant for \mathfrak{gl}_N .

Noncommutative Cayley–Hamilton theorem

C(u) denotes the Capelli determinant for \mathfrak{gl}_N .

Theorem (NT). We have

$$C(-E+N-1)=0$$
 and $C(-E^t)=0$.

Noncommutative Cayley–Hamilton theorem

C(u) denotes the Capelli determinant for \mathfrak{gl}_N .

Theorem (NT). We have

$$\mathcal{C}(-E+N-1)=0$$
 and $\mathcal{C}(-E^t)=0$.

Corollary (Characteristic identities of Bracken and Green).

Noncommutative Cayley-Hamilton theorem

C(u) denotes the Capelli determinant for \mathfrak{gl}_N .

Theorem (NT). We have

$$\mathcal{C}(-E+N-1)=0$$
 and $\mathcal{C}(-E^t)=0$.

Corollary (Characteristic identities of Bracken and Green).

The following identities hold for the image of the matrix E in the representation $L(\lambda)$ of \mathfrak{gl}_N :

$$\prod_{i=1}^{N} (E - I_i - N + 1) = 0 \quad \text{and} \quad \prod_{i=1}^{N} (E^t - I_i) = 0.$$

For each $1 \le m \le N$ consider the complete oriented graph with the vertices $1, 2, \ldots, m$.

For each $1 \le m \le N$ consider the complete oriented graph with the vertices $1, 2, \ldots, m$.

For each pair of vertices $i, j \in \{1, ..., m\}$, label the arrow from i to j by $E_{ij} - \delta_{ij}(m-1)$.

For each $1 \le m \le N$ consider the complete oriented graph with the vertices $1, 2, \ldots, m$.

For each pair of vertices $i, j \in \{1, ..., m\}$, label the arrow from i to j by $E_{ij} - \delta_{ij}(m-1)$.

Given a path in the graph, take the ordered product of the labels of the arrows to get an element of $\mathrm{U}(\mathfrak{gl}_N)$ which we call the label of the path.

Example. The complete oriented graph for m = 3:

For any positive integer k set

$$\Phi_k^{(m)} = \sum \frac{k}{\sharp \text{ returns to } m} \Big\{ \text{label of the path} \Big\},$$

summed over all paths in the graph from m to m of length k.

For any positive integer k set

$$\Phi_k^{(m)} = \sum \frac{k}{\sharp \text{ returns to } m} \Big\{ \text{label of the path} \Big\},\,$$

summed over all paths in the graph from m to m of length k.

Example.

$$\Phi_1^{(m)} = E_{mm} - m + 1$$

$$\Phi_2^{(m)} = (E_{mm} - m + 1)^2 + 2 \sum_{i=1}^{m-1} E_{mi} E_{im}.$$

Theorem (GKLLRT). For any $k \ge 1$ the element

$$\Phi_k = \Phi_k^{(1)} + \cdots + \Phi_k^{(N)}$$

belongs to $Z(\mathfrak{gl}_N)$. Moreover,

$$\chi(\Phi_k)=I_1^k+\cdots+I_N^k.$$

Theorem (GKLLRT). For any $k \ge 1$ the element

$$\Phi_k = \Phi_k^{(1)} + \cdots + \Phi_k^{(N)}$$

belongs to $Z(\mathfrak{gl}_N)$. Moreover,

$$\chi(\Phi_k) = I_1^k + \cdots + I_N^k.$$

Example.

$$\begin{split} & \Phi_1 = \sum_{m=1}^N (E_{mm} - m + 1), \\ & \Phi_2 = \sum_{m=1}^N (E_{mm} - m + 1)^2 + 2 \sum_{1 \leq l < m \leq N} E_{ml} \, E_{lm}. \end{split}$$

For N = 2n or N = 2n + 1, respectively, set

$$\mathfrak{g}_N=\mathfrak{o}_{2n+1}, \qquad \mathfrak{sp}_{2n}, \qquad \mathfrak{o}_{2n}.$$

For N = 2n or N = 2n + 1, respectively, set

$$\mathfrak{g}_N=\mathfrak{o}_{2n+1}, \qquad \mathfrak{sp}_{2n}, \qquad \mathfrak{o}_{2n}.$$

We will number the rows and columns of $N \times N$ matrices by the indices $\{-n, \ldots, -1, 0, 1, \ldots, n\}$ if N = 2n + 1, and by $\{-n, \ldots, -1, 1, \ldots, n\}$ if N = 2n.

For N = 2n or N = 2n + 1, respectively, set

$$\mathfrak{g}_N = \mathfrak{o}_{2n+1}, \qquad \mathfrak{sp}_{2n}, \qquad \mathfrak{o}_{2n}.$$

We will number the rows and columns of $N \times N$ matrices by the indices $\{-n, \ldots, -1, 0, 1, \ldots, n\}$ if N = 2n + 1, and by $\{-n, \ldots, -1, 1, \ldots, n\}$ if N = 2n.

The Lie algebra $\mathfrak{g}_N = \mathfrak{o}_N$ is spanned by the elements

$$F_{ij} = E_{ij} - E_{-j,-i}, \qquad -n \leqslant i,j \leqslant n.$$

$$g_N = o_{2n+1}$$
 $g_N = o_{2n}$
 $-n \cdots -1 \ 0 \ 1 \cdots n$ $-n \cdots -1 \ 1 \cdots n$
 $A = -A'$
 \vdots
 $A = -A'$
 \vdots
 \vdots
 $A = -A'$

Skew-symmetric matrices with respect to the second diagonal.

n

n

The Lie algebra $\mathfrak{g}_N = \mathfrak{sp}_N$ with N = 2n is spanned by the elements

$$F_{ij} = E_{ij} - \operatorname{sgn} i \cdot \operatorname{sgn} j \cdot E_{-i,-i}, \quad -n \leqslant i, j \leqslant n.$$

The Lie algebra $\mathfrak{g}_N = \mathfrak{sp}_N$ with N = 2n is spanned by the elements

$$F_{ij} = E_{ij} - \operatorname{sgn} i \cdot \operatorname{sgn} j \cdot E_{-j,-i}, \qquad -n \leqslant i, j \leqslant n.$$

For any *n*-tuple of complex numbers $\lambda = (\lambda_1, \dots, \lambda_n)$ the corresponding irreducible highest weight representation $V(\lambda)$ of \mathfrak{g}_N is generated by a nonzero vector ξ such that

$$F_{ij} \, \xi = 0$$
 for $-n \leqslant i < j \leqslant n$, and $F_{ii} \, \xi = \lambda_i \, \xi$ for $1 \leqslant i \leqslant n$.

Any element $z \in \mathrm{Z}(\mathfrak{g}_N)$ of the center of $\mathrm{U}(\mathfrak{g}_N)$ acts as a multiplication by a scalar $\chi(z)$ in $V(\lambda)$.

Any element $z \in Z(\mathfrak{g}_N)$ of the center of $U(\mathfrak{g}_N)$ acts as a multiplication by a scalar $\chi(z)$ in $V(\lambda)$. This scalar is a polynomial in $\lambda_1, \ldots, \lambda_n$.

Any element $z \in Z(\mathfrak{g}_N)$ of the center of $U(\mathfrak{g}_N)$ acts as a multiplication by a scalar $\chi(z)$ in $V(\lambda)$. This scalar is a polynomial in $\lambda_1, \ldots, \lambda_n$. In the B and C cases, this polynomial is symmetric in the variables I_1^2, \ldots, I_n^2 , where $I_i = \lambda_i + \rho_i$ and

$$\rho_i = -\rho_{-i} = \begin{cases} -i+1 & \text{for } \mathfrak{g}_N = \mathfrak{o}_{2n}, \\ -i+\frac{1}{2} & \text{for } \mathfrak{g}_N = \mathfrak{o}_{2n+1}, \\ -i & \text{for } \mathfrak{g}_N = \mathfrak{sp}_{2n}, \end{cases}$$

for i = 1, ..., n. Also, $\rho_0 = 1/2$ in the case $\mathfrak{g}_N = \mathfrak{o}_{2n+1}$.

Any element $z \in Z(\mathfrak{g}_N)$ of the center of $U(\mathfrak{g}_N)$ acts as a multiplication by a scalar $\chi(z)$ in $V(\lambda)$. This scalar is a polynomial in $\lambda_1, \ldots, \lambda_n$. In the B and C cases, this polynomial is symmetric in the variables I_1^2, \ldots, I_n^2 , where $I_i = \lambda_i + \rho_i$ and

$$\rho_{i} = -\rho_{-i} = \begin{cases} -i + 1 & \text{for } \mathfrak{g}_{N} = \mathfrak{o}_{2n}, \\ -i + \frac{1}{2} & \text{for } \mathfrak{g}_{N} = \mathfrak{o}_{2n+1}, \\ -i & \text{for } \mathfrak{g}_{N} = \mathfrak{sp}_{2n}, \end{cases}$$

for i = 1, ..., n. Also, $\rho_0 = 1/2$ in the case $\mathfrak{g}_N = \mathfrak{o}_{2n+1}$.

In the *D* case $\chi(z)$ is the sum of a symmetric polynomial in I_1^2, \ldots, I_n^2 and $I_1 \ldots I_n$ times a symmetric polynomial in I_1^2, \ldots, I_n^2 .

The map

$$\chi: \mathbf{Z}(\mathfrak{g}_N) \to \text{ algebra of polynomials}$$

is an algebra isomorphism called the Harish-Chandra isomorphism.

The map

$$\chi: \mathbf{Z}(\mathfrak{g}_N) \to \text{ algebra of polynomials}$$

is an algebra isomorphism called the Harish-Chandra isomorphism.

Example. For $\mathfrak{g}_N = \mathfrak{o}_N$

$$\sum_{m=1}^{n} \left((F_{mm} + \rho_m)^2 + 2 \sum_{-m < i < m} F_{mi} F_{im} \right)$$

is the second degree Casimir element. Its Harish-Chandra image is

$$I_1^2 + \cdots + I_n^2$$
.

Capelli-type determinant for \mathfrak{g}_N

Capelli-type determinant for \mathfrak{g}_N

Introduce a special map

$$\varphi_{N}:\mathfrak{S}_{N}\to\mathfrak{S}_{N},\qquad p\mapsto p'$$

from the symmetric group \mathfrak{S}_N into itself.

Capelli-type determinant for \mathfrak{g}_N

Introduce a special map

$$\varphi_{N}:\mathfrak{S}_{N}\to\mathfrak{S}_{N},\qquad p\mapsto p'$$

from the symmetric group \mathfrak{S}_N into itself.

If N=2 we define φ_2 as the map $\mathfrak{S}_2 \to \mathfrak{S}_2$ whose image is the identity permutation.

Capelli-type determinant for \mathfrak{g}_N

Introduce a special map

$$\varphi_{N}:\mathfrak{S}_{N}\to\mathfrak{S}_{N},\qquad p\mapsto p'$$

from the symmetric group \mathfrak{S}_N into itself.

If N=2 we define φ_2 as the map $\mathfrak{S}_2 \to \mathfrak{S}_2$ whose image is the identity permutation.

Given a set of positive integers $a_1 < \cdots < a_N$ we regard \mathfrak{S}_N as the group of their permutations.

For $N \geqslant 3$ define a map from the set of ordered pairs

$$\{(a_k,a_l)\mid k\neq l\}$$

For $N \geqslant 3$ define a map from the set of ordered pairs

$$\{(a_k,a_l)\mid k\neq l\}$$

$$(a_k, a_l) \mapsto (a_l, a_k), \qquad k, l < N,$$

For $N \ge 3$ define a map from the set of ordered pairs

$$\{(a_k,a_l)\mid k\neq l\}$$

$$(a_k, a_l) \mapsto (a_l, a_k),$$
 $k, l < N,$ $(a_k, a_N) \mapsto (a_{N-1}, a_k),$ $k < N-1,$ $(a_N, a_k) \mapsto (a_k, a_{N-1}),$ $k < N-1,$

For $N \ge 3$ define a map from the set of ordered pairs

$$\{(a_k,a_l)\mid k\neq l\}$$

$$(a_k, a_l) \mapsto (a_l, a_k),$$
 $k, l < N,$ $(a_k, a_N) \mapsto (a_{N-1}, a_k),$ $k < N-1,$ $(a_N, a_k) \mapsto (a_k, a_{N-1}),$ $k < N-1,$ $(a_{N-1}, a_N) \mapsto (a_{N-1}, a_{N-2}),$ $(a_N, a_{N-1}) \mapsto (a_{N-1}, a_{N-2}).$

Let $p = (p_1, \dots, p_N)$ be a permutation of the indices a_1, \dots, a_N . Its image under the map φ_N is the permutation of the form $p' = (p'_1, \dots, p'_{N-1}, a_N)$. Let $p = (p_1, \dots, p_N)$ be a permutation of the indices a_1, \dots, a_N . Its image under the map φ_N is the permutation of the form $p' = (p'_1, \dots, p'_{N-1}, a_N)$.

The pair (p'_1, p'_{N-1}) is the image of the ordered pair (p_1, p_N) under the above map.

Let $p=(p_1,\ldots,p_N)$ be a permutation of the indices a_1,\ldots,a_N . Its image under the map φ_N is the permutation of the form

The pair (p'_1, p'_{N-1}) is the image of the ordered pair (p_1, p_N) under the above map.

 $p' = (p'_1, \ldots, p'_{N-1}, a_N).$

Then the pair (p'_2, p'_{N-2}) is found as the image of (p_2, p_{N-1}) under the above map, etc.

p = (3, 5, 7, 6, 1, 2, 4).

$$p = (3, 5, 7, 6, 1, 2, 4).$$

$$(3,5,7,6,1,2,4)\mapsto (*,*,*,*,*,*,7)$$

$$p = (3, 5, 7, 6, 1, 2, 4).$$

$$(3,5,7,6,1,2,4)\mapsto (*,*,*,*,*,*,7)$$

$$({\color{red}3}, 5, 7, 6, 1, 2, {\color{red}4}) \mapsto ({\color{gray}4}, {\color{gray}*}, {\color{gray}*}, {\color{gray}*}, {\color{gray}*}, {\color{gray}3}, {\color{gray}7})$$

$$p = (3, 5, 7, 6, 1, 2, 4).$$

$$(3,5,7,6,1,2,4) \mapsto (*,*,*,*,*,*,7)$$

$$(3,5,7,6,1,2,4) \mapsto (4,*,*,*,*,3,7)$$

$$(3, 5, 7, 6, 1, 2, 4) \mapsto (4, 2, *, *, 5, 3, 7)$$

$$p = (3, 5, 7, 6, 1, 2, 4).$$

$$(3,5,7,6,1,2,4) \mapsto (*,*,*,*,*,*,7)$$

$$(3,5,7,6,1,2,4) \mapsto (4,*,*,*,*,3,7)$$

$$(3, 5, 7, 6, 1, 2, 4) \mapsto (4, 2, *, *, 5, 3, 7)$$

$$(3,5,7,6,1,2,4) \mapsto (4,2,1,6,5,3,7)$$

$$p = (3, 5, 7, 6, 1, 2, 4).$$

$$(3,5,7,6,1,2,4)\mapsto (*,*,*,*,*,*,7)$$

$$(0,0,1,0,1,2,4) \mapsto (*,*,*,*,*,*,1)$$

$$(3,5,7,6,1,2,4) \mapsto (4,*,*,*,*,3,7)$$

$$(3,5,7,6,1,{2,4})\mapsto (4,2,*,*,5,3,7)$$

$$(3,5,7,6,1,2,4) \mapsto (4,2,1,6,5,3,7)$$

Thus,
$$p' = (4, 2, 1, 6, 5, 3, 7)$$
.

Each fiber of the map φ_N is an interval in \mathfrak{S}_N with respect to the Bruhat order, and this interval is isomorphic to a Boolean poset.

Each fiber of the map φ_N is an interval in \mathfrak{S}_N with respect to the Bruhat order, and this interval is isomorphic to a Boolean poset.

Each fiber of the map φ_N is an interval in \mathfrak{S}_N with respect to the Bruhat order, and this interval is isomorphic to a Boolean poset.

Denote by F the $N \times N$ matrix whose ij-th entry is F_{ij} .

Denote by F the $N \times N$ matrix whose ij-th entry is F_{ij} .

If u is a complex variable, we set

$$u + F = \begin{bmatrix} u + F_{-n,-n} & F_{-n,-n+1} & \dots & F_{-n,n} \\ F_{-n+1,-n} & u + F_{-n+1,-n+1} & \dots & F_{-n+1,n} \\ \vdots & \vdots & \ddots & \vdots \\ F_{n,-n} & F_{n,-n+1} & \dots & u + F_{n,n} \end{bmatrix}.$$

Denote by F the $N \times N$ matrix whose ij-th entry is F_{ij} .

If u is a complex variable, we set

$$u+F = \begin{bmatrix} u+F_{-n,-n} & F_{-n,-n+1} & \dots & F_{-n,n} \\ F_{-n+1,-n} & u+F_{-n+1,-n+1} & \dots & F_{-n+1,n} \\ \vdots & & \vdots & \ddots & \vdots \\ F_{n,-n} & F_{n,-n+1} & \dots & u+F_{n,n} \end{bmatrix}.$$

Note that

$$F_{-j,-i} = \begin{cases} -F_{ij} & \text{in the orthogonal case,} \\ -\operatorname{sgn} i \cdot \operatorname{sgn} j \cdot F_{ij} & \text{in the symplectic case.} \end{cases}$$

Introduce the Capelli-type determinant

$$C(u) = (-1)^n \sum_{p \in \mathfrak{S}_N} \operatorname{sgn} p p' \cdot (u + \rho_{-n} + F)_{-b_{p(1)}, b_{p'(1)}}$$

$$\times \cdots \times (u + \rho_n + F)_{-b_{\rho(N)}, b_{\rho'(N)}},$$

Introduce the Capelli-type determinant

$$C(u) = (-1)^{n} \sum_{p \in \mathfrak{S}_{N}} \operatorname{sgn} p p' \cdot (u + \rho_{-n} + F)_{-b_{p(1)}, b_{p'(1)}}$$
$$\times \cdots \times (u + \rho_{n} + F)_{-b_{p(N)}, b_{p'(N)}},$$

where (b_1, \ldots, b_N) is a fixed permutation of the indices $(-n, \ldots, n)$ and p' is the image of p under the map φ_N .

Theorem (M). The polynomial C(u) does not depend on the choice of the permutation (b_1, \ldots, b_N) .

Theorem (M). The polynomial C(u) does not depend on the choice of the permutation (b_1, \ldots, b_N) . All coefficients of C(u) belong to $Z(\mathfrak{g}_N)$.

Theorem (M). The polynomial $\mathcal{C}(u)$ does not depend on the choice of the permutation (b_1,\ldots,b_N) . All coefficients of $\mathcal{C}(u)$ belong to $Z(\mathfrak{g}_N)$. Moreover, the image of $\mathcal{C}(u)$ under the Harish-Chandra isomorphism is given by

$$\chi: \mathcal{C}(u) \mapsto \prod_{i=1}^{n} (u^2 - l_i^2), \quad \text{if} \quad N = 2n,$$

and

$$\chi: \mathcal{C}(u) \mapsto \left(u + \frac{1}{2}\right) \prod_{i=1}^{n} (u^2 - l_i^2), \quad \text{if} \quad N = 2n + 1.$$

Example. For $g_N = o_3$ take $(b_1, b_2, b_3) = (-1, 0, 1)$.

Example. For $g_N = o_3$ take $(b_1, b_2, b_3) = (-1, 0, 1)$.

Here
$$\rho_{-1} = \rho_0 = -\rho_1 = 1/2$$
, $l_1 = \lambda_1 - 1/2$

Here
$$\rho_{-1} = \rho_0 = -\rho_1 = 1/2$$
, $I_1 = \lambda_1 - 1/2$,

Example. For $\mathfrak{g}_N = \mathfrak{o}_3$ take $(b_1, b_2, b_3) = (-1, 0, 1)$. Here $\rho_{-1} = \rho_0 = -\rho_1 = 1/2$, $I_1 = \lambda_1 - 1/2$,

Here
$$\rho_{-1} = \rho_0 = -\rho_1 = 1/2$$
, $I_1 = \lambda_1 - 1/2$,

$$C(u) = (u + F_{-1,-1} + 1/2) (u + 1/2) (u + F_{11} - 1/2)$$
$$- F_{0,-1} F_{-1,0} (u + F_{11} - 1/2)$$
$$- F_{10} (u + F_{-1,-1} + 1/2) F_{01}.$$

Example. For $\mathfrak{g}_N = \mathfrak{o}_3$ take $(b_1, b_2, b_3) = (-1, 0, 1)$. Here $\rho_{-1} = \rho_0 = -\rho_1 = 1/2$, $I_1 = \lambda_1 - 1/2$.

$$C(u) = (u + F_{-1,-1} + 1/2) (u + 1/2) (u + F_{11} - 1/2)$$
$$- F_{0,-1} F_{-1,0} (u + F_{11} - 1/2)$$
$$- F_{10} (u + F_{-1,-1} + 1/2) F_{01}.$$

Hence

$$C(u) = (u + 1/2) (u^2 - (F_{11} - 1/2)^2 - 2F_{10}F_{01})$$

Example. For $\mathfrak{g}_N = \mathfrak{o}_3$ take $(b_1, b_2, b_3) = (-1, 0, 1)$. Here $\rho_{-1} = \rho_0 = -\rho_1 = 1/2$, $I_1 = \lambda_1 - 1/2$.

$$C(u) = (u + F_{-1,-1} + 1/2) (u + 1/2) (u + F_{11} - 1/2)$$
$$- F_{0,-1} F_{-1,0} (u + F_{11} - 1/2)$$
$$- F_{10} (u + F_{-1,-1} + 1/2) F_{01}.$$

Hence

$$C(u) = (u + 1/2) (u^2 - (F_{11} - 1/2)^2 - 2F_{10}F_{01})$$

and

$$\chi: \mathcal{C}(u) \mapsto (u+1/2)(u^2-l_1^2).$$

Noncommutative Pfaffians and Hafnians

Noncommutative Pfaffians and Hafnians

The Pfaffian Pf A of a $2k \times 2k$ matrix $A = [A_{ij}]$ is defined by

$$\operatorname{Pf} A = \frac{1}{2^k k!} \sum_{\sigma \in \mathfrak{S}_{2k}} \operatorname{sgn} \sigma \cdot A_{\sigma(1), \sigma(2)} \dots A_{\sigma(2k-1), \sigma(2k)}.$$

Noncommutative Pfaffians and Hafnians

The Pfaffian Pf A of a $2k \times 2k$ matrix $A = [A_{ij}]$ is defined by

$$\operatorname{Pf} A = \frac{1}{2^k k!} \sum_{\sigma \in \mathfrak{S}_{2k}} \operatorname{sgn} \sigma \cdot A_{\sigma(1), \sigma(2)} \dots A_{\sigma(2k-1), \sigma(2k)}.$$

If A is a skew-symmetric numerical matrix, then

$$\det A = (\operatorname{Pf} A)^2.$$

Examples. We have

$$Pf\begin{bmatrix}0 & A_{12}\\ -A_{12} & 0\end{bmatrix} = A_{12},$$

Examples. We have

$$Pf \begin{vmatrix} 0 & A_{12} \\ -A_{12} & 0 \end{vmatrix} = A_{12},$$

Let $\mathfrak{g}_N = \mathfrak{o}_N$.

Let $\mathfrak{g}_N = \mathfrak{o}_N$. For any subset I of $\{-n, \ldots, n\}$ containing 2k elements $i_1 < \cdots < i_{2k}$, the submatrix

$$F_{I} = \begin{bmatrix} 0 & F_{i_{1},-i_{2}} & \dots & F_{i_{1},-i_{2k}} \\ F_{i_{2},-i_{1}} & 0 & \dots & F_{i_{2},-i_{2k}} \\ \vdots & \vdots & \ddots & \vdots \\ F_{i_{2k},-i_{1}} & F_{i_{2k},-i_{2}} & \dots & 0 \end{bmatrix}$$

is skew-symmetric.

Let $\mathfrak{g}_N = \mathfrak{o}_N$. For any subset I of $\{-n, \ldots, n\}$ containing 2k elements $i_1 < \cdots < i_{2k}$, the submatrix

$$F_{I} = \begin{bmatrix} 0 & F_{i_{1},-i_{2}} & \dots & F_{i_{1},-i_{2k}} \\ F_{i_{2},-i_{1}} & 0 & \dots & F_{i_{2},-i_{2k}} \\ \vdots & \vdots & \ddots & \vdots \\ F_{i_{2k},-i_{1}} & F_{i_{2k},-i_{2}} & \dots & 0 \end{bmatrix}$$

is skew-symmetric.

Set

$$C_k = (-1)^k \cdot \sum_I \operatorname{Pf} F_I \cdot \operatorname{Pf} F_{I^*}, \qquad I^* = \{-i_{2k}, \dots, -i_1\},$$

summed over all subsets I with |I| = 2k.

Theorem (MN). C_1, \ldots, C_n are Casimir elements for \mathfrak{o}_N .

Theorem (MN). C_1, \ldots, C_n are Casimir elements for o_N .

Moreover, the image of C_k under the Harish-Chandra isomorphism is given by

$$\chi: C_k \mapsto (-1)^k \sum_{1 \le i_1 < \dots < i_k \le n} (l_{i_1}^2 - \rho_{i_1}^2) \dots (l_{i_k}^2 - \rho_{i_k-k+1}^2).$$

Theorem (MN). C_1, \ldots, C_n are Casimir elements for o_N .

Moreover, the image of C_k under the Harish-Chandra isomorphism is given by

$$\chi: C_k \mapsto (-1)^k \sum_{1 \leqslant i_1 < \dots < i_k \leqslant n} (I_{i_1}^2 - \rho_{i_1}^2) \dots (I_{i_k}^2 - \rho_{i_k-k+1}^2).$$

Corollary.

$$\frac{C(u)}{(u+\rho_{-n})\dots(u+\rho_n)}=1+\sum_{k=1}^n\frac{C_k}{(u^2-\rho_{n-k+1}^2)\dots(u^2-\rho_n^2)}.$$

For any $k \geqslant 1$ let $I = \{i_1, \dots, i_{2k}\}$ be a multiset whose elements belong to $\{-n, \dots, n\}$.

For any $k \ge 1$ let $I = \{i_1, \dots, i_{2k}\}$ be a multiset whose elements belong to $\{-n, \dots, n\}$.

Denote by A_l the $2k \times 2k$ matrix whose (a, b) entry is $A_{i_a i_b}$.

For any $k \ge 1$ let $I = \{i_1, \dots, i_{2k}\}$ be a multiset whose elements belong to $\{-n, \dots, n\}$.

Denote by A_l the $2k \times 2k$ matrix whose (a, b) entry is $A_{i_a i_b}$.

The Hafnian $Hf A_I$ of the matrix A_I is defined by

$$\operatorname{Hf} A_{I} = \frac{1}{2^{k} k!} \sum_{\sigma \in \mathfrak{S}_{2k}} A_{i_{\sigma(1)}, i_{\sigma(2)}} \dots A_{i_{\sigma(2k-1)}, i_{\sigma(2k)}}.$$

For any $k \ge 1$ let $I = \{i_1, \dots, i_{2k}\}$ be a multiset whose elements belong to $\{-n, \dots, n\}$.

Denote by A_l the $2k \times 2k$ matrix whose (a, b) entry is $A_{i_a i_b}$.

The Hafnian $Hf A_I$ of the matrix A_I is defined by

$$\operatorname{Hf} A_{I} = \frac{1}{2^{k} k!} \sum_{\sigma \in \mathfrak{S}_{2k}} A_{i_{\sigma(1)}, i_{\sigma(2)}} \dots A_{i_{\sigma(2k-1)}, i_{\sigma(2k)}}.$$

Remark. The term is due to Caianiello, '56. Hafnia is the Latin name for "Copenhagen"; cf. Hafnium⁷².

Let $\mathfrak{g}_N = \mathfrak{sp}_{2n}$.

Let $\mathfrak{g}_N = \mathfrak{sp}_{2n}$. Let $I = (i_1 \leqslant \cdots \leqslant i_{2k})$ be a sequence of elements of the set $\{-n, \ldots, n\}$.

Let $\mathfrak{g}_N = \mathfrak{sp}_{2n}$. Let $I = (i_1 \leqslant \cdots \leqslant i_{2k})$ be a sequence of elements of the set $\{-n, \ldots, n\}$. Set $\widetilde{F}_{ij} = \operatorname{sgn} i \cdot F_{ij}$.

Let $\mathfrak{g}_N = \mathfrak{sp}_{2n}$. Let $I = (i_1 \leqslant \cdots \leqslant i_{2k})$ be a sequence of elements of the set $\{-n, \ldots, n\}$. Set $\widetilde{F}_{ij} = \operatorname{sgn} i \cdot F_{ij}$.

The matrix

$$F_{I} = \begin{bmatrix} \widetilde{F}_{i_{1},-i_{1}} & \widetilde{F}_{i_{1},-i_{2}} & \dots & \widetilde{F}_{i_{1},-i_{2k}} \\ \widetilde{F}_{i_{2},-i_{1}} & \widetilde{F}_{i_{2},-i_{2}} & \dots & \widetilde{F}_{i_{2},-i_{2k}} \\ \vdots & \vdots & \ddots & \vdots \\ \widetilde{F}_{i_{2k},-i_{1}} & \widetilde{F}_{i_{2k},-i_{2}} & \dots & \widetilde{F}_{i_{2k},-i_{2k}} \end{bmatrix}$$

is symmetric.

Let $\mathfrak{g}_N = \mathfrak{sp}_{2n}$. Let $I = (i_1 \leqslant \cdots \leqslant i_{2k})$ be a sequence of elements of the set $\{-n, \ldots, n\}$. Set $\widetilde{F}_{ij} = \operatorname{sgn} i \cdot F_{ij}$.

The matrix

$$F_{I} = \begin{bmatrix} \widetilde{F}_{i_{1},-i_{1}} & \widetilde{F}_{i_{1},-i_{2}} & \dots & \widetilde{F}_{i_{1},-i_{2k}} \\ \widetilde{F}_{i_{2},-i_{1}} & \widetilde{F}_{i_{2},-i_{2}} & \dots & \widetilde{F}_{i_{2},-i_{2k}} \\ \vdots & \vdots & \ddots & \vdots \\ \widetilde{F}_{i_{2k},-i_{1}} & \widetilde{F}_{i_{2k},-i_{2}} & \dots & \widetilde{F}_{i_{2k},-i_{2k}} \end{bmatrix}$$

is symmetric. Set

$$D_k = \sum_{I} \frac{\operatorname{sgn}(i_1 \dots i_{2k})}{\alpha_{-n}! \dots \alpha_n!} \cdot \operatorname{Hf} F_I \cdot \operatorname{Hf} F_{I^*}, \qquad I^* = \{-i_{2k}, \dots, -i_1\},$$

where α_i is the multiplicity of an element i in I.

Theorem (MN). For $k \ge 1$ the D_k are Casimir elements for \mathfrak{sp}_{2n} .

Theorem (MN). For $k \ge 1$ the D_k are Casimir elements for \mathfrak{sp}_{2n} . Moreover, the image of D_k under the Harish-Chandra isomorphism is given by

$$\chi: D_k \mapsto (-1)^k \sum_{1 \leqslant i_1 \leqslant \cdots \leqslant i_k \leqslant n} (I_{i_1}^2 - i_1^2) \cdots (I_{i_k}^2 - (i_k + k - 1)^2).$$

Theorem (MN). For $k \ge 1$ the D_k are Casimir elements for \mathfrak{sp}_{2n} . Moreover, the image of D_k under the Harish-Chandra isomorphism is given by

$$\chi: D_k \mapsto (-1)^k \sum_{1 \leqslant i_1 \leqslant \cdots \leqslant i_k \leqslant n} (I_{i_1}^2 - i_1^2) \cdots (I_{i_k}^2 - (i_k + k - 1)^2).$$

Corollary.

$$\left(\frac{C(u)}{(u+\rho_{-n})\dots(u+\rho_n)}\right)^{-1}$$

$$=1+\sum_{k=1}^{\infty}\frac{(-1)^kD_k}{(u^2-(n+1)^2)\dots(u^2-(n+k)^2)}.$$

Recall that $E = [E_{ij}]$ with $i, j \in \{1, ..., N\}$.

Recall that $E = [E_{ij}]$ with $i, j \in \{1, ..., N\}$.

We have

$$[E_{ij},(E^s)_{kl}] = \delta_{kj}(E^s)_{il} - \delta_{il}(E^s)_{kj}.$$

Recall that $E = [E_{ij}]$ with $i, j \in \{1, ..., N\}$.

We have

$$[E_{ij},(E^s)_{kl}] = \delta_{kj}(E^s)_{il} - \delta_{il}(E^s)_{kj}.$$

This implies that $\operatorname{tr} E^s$ are Casimir elements for \mathfrak{gl}_N (the Gelfand invariants).

Recall that $E = [E_{ij}]$ with $i, j \in \{1, ..., N\}$.

We have

$$[E_{ij},(E^s)_{kl}]=\delta_{kj}(E^s)_{il}-\delta_{il}(E^s)_{kj}.$$

This implies that $\operatorname{tr} E^s$ are Casimir elements for \mathfrak{gl}_N (the Gelfand invariants).

More generally, we have

$$[(E^{r+1})_{ij},(E^s)_{kl}]-[(E^r)_{ij},(E^{s+1})_{kl}]=(E^r)_{kj}(E^s)_{il}-(E^s)_{kj}(E^r)_{il},$$

where $r, s \ge 0$ and $E^0 = 1$ is the identity matrix.

Yangian for \mathfrak{gl}_N

Yangian for \mathfrak{gl}_N

Definition

The Yangian for \mathfrak{gl}_N is the associative algebra over $\mathbb C$ with countably many generators $t_{ij}^{(1)},\ t_{ij}^{(2)},\ldots$ where $i,j=1,\ldots,N,$ and the defining relations

$$[t_{ij}^{(r+1)}, t_{kl}^{(s)}] - [t_{ij}^{(r)}, t_{kl}^{(s+1)}] = t_{kj}^{(r)} t_{il}^{(s)} - t_{kj}^{(s)} t_{il}^{(r)},$$

where $r, s = 0, 1, \ldots$ and $t_{ij}^{(0)} = \delta_{ij}$.

Yangian for \mathfrak{gl}_N

Definition

The Yangian for \mathfrak{gl}_N is the associative algebra over \mathbb{C} with countably many generators $t_{ij}^{(1)},\ t_{ij}^{(2)},\ldots$ where $i,j=1,\ldots,N,$ and the defining relations

$$[t_{ij}^{(r+1)}, t_{kl}^{(s)}] - [t_{ij}^{(r)}, t_{kl}^{(s+1)}] = t_{kj}^{(r)} t_{il}^{(s)} - t_{kj}^{(s)} t_{il}^{(r)},$$

where
$$r, s = 0, 1, \ldots$$
 and $t_{ij}^{(0)} = \delta_{ij}$.

This algebra is denoted by $Y(\mathfrak{gl}_N)$.

Introduce the formal generating series

$$t_{ij}(u) = \delta_{ij} + t_{ij}^{(1)}u^{-1} + t_{ij}^{(2)}u^{-2} + \cdots \in Y(\mathfrak{gl}_N)[[u^{-1}]].$$

Introduce the formal generating series

$$t_{ij}(u) = \delta_{ij} + t_{ij}^{(1)}u^{-1} + t_{ij}^{(2)}u^{-2} + \cdots \in Y(\mathfrak{gl}_N)[[u^{-1}]].$$

The defining relations take the form

$$(u-v)[t_{ij}(u),t_{kl}(v)]=t_{kj}(u)\,t_{il}(v)-t_{kj}(v)\,t_{il}(u).$$

Introduce the formal generating series

$$t_{ij}(u) = \delta_{ij} + t_{ij}^{(1)}u^{-1} + t_{ij}^{(2)}u^{-2} + \cdots \in Y(\mathfrak{gl}_N)[[u^{-1}]].$$

The defining relations take the form

$$(u-v)[t_{ij}(u),t_{kl}(v)]=t_{kj}(u)t_{il}(v)-t_{kj}(v)t_{il}(u).$$

The defining relations are also equivalent to

$$[t_{ij}^{(r)}, t_{kl}^{(s)}] = \sum_{a=1}^{\min\{r,s\}} \left(t_{kj}^{(a-1)} t_{il}^{(r+s-a)} - t_{kj}^{(r+s-a)} t_{il}^{(a-1)} \right).$$

Evaluation homomorphism

Proposition. The assignment

$$\pi_N: t_{ij}(u) \mapsto \delta_{ij} + E_{ij} u^{-1}$$

defines a surjective homomorphism $Y(\mathfrak{gl}_N) \to U(\mathfrak{gl}_N)$.

Evaluation homomorphism

Proposition. The assignment

$$\pi_{N}: t_{ij}(u) \mapsto \delta_{ij} + E_{ij} u^{-1}$$

defines a surjective homomorphism $\mathrm{Y}(\mathfrak{gl}_N) \to \mathrm{U}(\mathfrak{gl}_N)$.

Moreover, the assignment

$$E_{ij}\mapsto t_{ij}^{(1)}$$

defines an embedding $U(\mathfrak{gl}_N) \hookrightarrow Y(\mathfrak{gl}_N)$.

Evaluation homomorphism

Proposition. The assignment

$$\pi_{N}: t_{ij}(u) \mapsto \delta_{ij} + E_{ij} u^{-1}$$

defines a surjective homomorphism $Y(\mathfrak{gl}_N) \to U(\mathfrak{gl}_N)$.

Moreover, the assignment

$$E_{ij}\mapsto t_{ij}^{(1)}$$

defines an embedding $U(\mathfrak{gl}_N) \hookrightarrow Y(\mathfrak{gl}_N)$.

Hence, we may regard $U(\mathfrak{gl}_N)$ as a subalgebra of $Y(\mathfrak{gl}_N)$.

Matrix form of the defining relations

Matrix form of the defining relations

Introduce the $N \times N$ matrix T(u) whose ij-th entry is the series $t_{ij}(u)$.

Matrix form of the defining relations

Introduce the $N \times N$ matrix T(u) whose ij-th entry is the series $t_{ij}(u)$. We regard T(u) as an element of the algebra $\operatorname{End} \mathbb{C}^N \otimes \operatorname{Y}(\mathfrak{gl}_N)[[u^{-1}]]$:

$$T(u) = \sum_{i,j=1}^{N} e_{ij} \otimes t_{ij}(u),$$

where $e_{ii} \in \operatorname{End} \mathbb{C}^N$ are the standard matrix units.

For any positive integer m consider the algebra

$$\underbrace{\operatorname{End} \operatorname{\mathbb{C}}^N \otimes \cdots \otimes \operatorname{End} \operatorname{\mathbb{C}}^N}_m \otimes \operatorname{Y}(\mathfrak{gl}_N).$$

For any positive integer *m* consider the algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \cdots \otimes \operatorname{End} \mathbb{C}^N}_{m} \otimes \operatorname{Y}(\mathfrak{gl}_N).$$

For any $a \in \{1, ..., m\}$ denote by $T_a(u)$ the matrix T(u) which corresponds to the a-th copy of the algebra $\operatorname{End} \mathbb{C}^N$ in the tensor product algebra.

For any positive integer *m* consider the algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \cdots \otimes \operatorname{End} \mathbb{C}^N}_{m} \otimes \operatorname{Y}(\mathfrak{gl}_N).$$

For any $a \in \{1, \ldots, m\}$ denote by $T_a(u)$ the matrix T(u) which corresponds to the a-th copy of the algebra $\operatorname{End} \mathbb{C}^N$ in the tensor product algebra. That is, $T_a(u)$ is a formal power series in u^{-1} given by

$$T_a(u) = \sum_{i,j=1}^N \underbrace{1 \otimes \cdots \otimes 1}_{a-1} \otimes e_{ij} \otimes \underbrace{1 \otimes \cdots \otimes 1}_{m-a} \otimes t_{ij}(u),$$

where 1 is the identity matrix.

Similarly, if

$$C = \sum_{i,j,k,l=1}^{N} c_{ijkl} e_{ij} \otimes e_{kl} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N},$$

Similarly, if

$$C = \sum_{i,i,k,l=1}^{N} c_{ijkl} e_{ij} \otimes e_{kl} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N},$$

then for any two indices $a, b \in \{1, ..., m\}$ such that a < b, define the element C_{ab} of the algebra $(\operatorname{End} \mathbb{C}^N)^{\otimes m}$ by

$$C_{ab} = \sum_{i,j,k,l=1}^{N} c_{ijkl} \underbrace{1 \otimes \cdots \otimes 1}_{a-1} \otimes e_{ij} \otimes \underbrace{1 \otimes \cdots \otimes 1}_{b-a-1} \otimes e_{kl} \otimes \underbrace{1 \otimes \cdots \otimes 1}_{m-b}.$$

Consider now the permutation operator

$$P = \sum_{i,j=1}^{N} e_{ij} \otimes e_{ji} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}.$$

Consider now the permutation operator

$$P = \sum_{i,j=1}^{N} e_{ij} \otimes e_{ji} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}.$$

The rational function

$$R(u) = 1 - Pu^{-1}$$

with values in $\operatorname{End} \mathbb{C}^N \otimes \operatorname{End} \mathbb{C}^N$ is called the Yang R-matrix.

Proposition. We have the identity

$$R_{12}(u) R_{13}(u+v) R_{23}(v) = R_{23}(v) R_{13}(u+v) R_{12}(u).$$

Proposition. We have the identity

$$R_{12}(u) R_{13}(u+v) R_{23}(v) = R_{23}(v) R_{13}(u+v) R_{12}(u).$$

This relation is known as the Yang–Baxter equation. The Yang *R*-matrix is its simplest nontrivial solution. Proposition. The defining relations of the algebra $Y(\mathfrak{gl}_N)$ can be written in the equivalent form

$$R(u-v) T_1(u) T_2(v) = T_2(v) T_1(u) R(u-v).$$

Proposition. The defining relations of the algebra $Y(\mathfrak{gl}_N)$ can be written in the equivalent form

$$R(u-v) T_1(u) T_2(v) = T_2(v) T_1(u) R(u-v).$$

Here $T_1(u)$ and $T_2(v)$ as formal power series with the coefficients in the algebra

End
$$\mathbb{C}^N \otimes \operatorname{End} \mathbb{C}^N \otimes \operatorname{Y}(\mathfrak{gl}_N)$$
.

Proposition. The defining relations of the algebra $Y(\mathfrak{gl}_N)$ can be written in the equivalent form

$$R(u-v) T_1(u) T_2(v) = T_2(v) T_1(u) R(u-v).$$

Here $T_1(u)$ and $T_2(v)$ as formal power series with the coefficients in the algebra

End
$$\mathbb{C}^N \otimes \text{End } \mathbb{C}^N \otimes Y(\mathfrak{gl}_N)$$
.

The matrix relation is called the *RTT* relation (or ternary relation).

Quantum determinant

Quantum determinant

For any $m \geqslant 2$ introduce the rational function $R(u_1, \ldots, u_m)$ with values in the tensor product algebra $(\operatorname{End} \mathbb{C}^N)^{\otimes m}$ by

$$R(u_1,\ldots,u_m)=(R_{m-1,m})(R_{m-2,m}R_{m-2,m-1})\ldots(R_{1m}\ldots R_{12}),$$

where u_1, \ldots, u_m are independent complex variables and

$$R_{ij} = R_{ij}(u_i - u_j) = 1 - P_{ij}(u_i - u_j)^{-1}.$$

•

Applying the *RTT* relation repeatedly, we come to the fundamental relation

$$R(u_1, \ldots, u_m) T_1(u_1) \ldots T_m(u_m) = T_m(u_m) \ldots T_1(u_1) R(u_1, \ldots, u_m).$$

Applying the *RTT* relation repeatedly, we come to the fundamental relation

$$R(u_1,\ldots,u_m) T_1(u_1) \ldots T_m(u_m) = T_m(u_m) \ldots T_1(u_1) R(u_1,\ldots,u_m).$$

Lemma (Jucys). If $u_i - u_{i+1} = 1$ for all i = 1, ..., m-1 then

$$R(u_1,\ldots,u_m)=A_m,$$

the image of the anti-symmetrizer $\sum_{p \in \mathfrak{S}_m} \operatorname{sgn} p \cdot p \in \mathbb{C} [\mathfrak{S}_m]$ in the algebra $\operatorname{End} (\mathbb{C}^N)^{\otimes m}$.

Hence, taking m = N we get

 $A_N T_1(u) \dots T_N(u-N+1) = T_N(u-N+1) \dots T_1(u) A_N.$

Hence, taking m = N we get

$$A_N T_1(u) \dots T_N(u-N+1) = T_N(u-N+1) \dots T_1(u) A_N.$$

The operator A_N on $(\mathbb{C}^N)^{\otimes N}$ is one-dimensional.

Hence, taking m = N we get

$$A_N T_1(u) \dots T_N(u-N+1) = T_N(u-N+1) \dots T_1(u) A_N.$$

The operator A_N on $(\mathbb{C}^N)^{\otimes N}$ is one-dimensional.

Definition

The quantum determinant of the matrix T(u) with the coefficients in $Y(\mathfrak{gl}_N)$ is the formal series

$$\det T(u) = 1 + d_1u^{-1} + d_2u^{-2} + \dots$$

such that both sides of the above relation are equal to $A_N \operatorname{qdet} T(u)$.

We have

$$\operatorname{qdet} T(u) = \sum_{p \in \mathfrak{S}_N} \operatorname{sgn} p \cdot t_{p(1),1}(u) \dots t_{p(N),N}(u-N+1)$$
$$= \sum_{p \in \mathfrak{S}_N} \operatorname{sgn} p \cdot t_{1,p(1)}(u-N+1) \dots t_{N,p(N)}(u).$$

We have

$$\operatorname{qdet} T(u) = \sum_{p \in \mathfrak{S}_N} \operatorname{sgn} p \cdot t_{p(1),1}(u) \dots t_{p(N),N}(u-N+1)$$
$$= \sum_{p \in \mathfrak{S}_N} \operatorname{sgn} p \cdot t_{1,p(1)}(u-N+1) \dots t_{N,p(N)}(u).$$

Example. For N = 2 we have

qdet
$$T(u) = t_{11}(u) t_{22}(u-1) - t_{21}(u) t_{12}(u-1)$$

 $= t_{22}(u) t_{11}(u-1) - t_{12}(u) t_{21}(u-1)$
 $= t_{11}(u-1) t_{22}(u) - t_{12}(u-1) t_{21}(u)$
 $= t_{22}(u-1) t_{11}(u) - t_{21}(u-1) t_{12}(u)$.

Theorem (KS). The coefficients d_1, d_2, \ldots of the series qdet T(u) belong to the center $ZY(\mathfrak{gl}_N)$ of the algebra $Y(\mathfrak{gl}_N)$.

Theorem (KS). The coefficients d_1, d_2, \ldots of the series $q \det T(u)$ belong to the center $ZY(\mathfrak{gl}_N)$ of the algebra $Y(\mathfrak{gl}_N)$. Moreover, these elements are algebraically independent and generate $ZY(\mathfrak{gl}_N)$.

Theorem (KS). The coefficients d_1, d_2, \ldots of the series $q \det T(u)$ belong to the center $ZY(\mathfrak{gl}_N)$ of the algebra $Y(\mathfrak{gl}_N)$. Moreover, these elements are algebraically independent and generate $ZY(\mathfrak{gl}_N)$.

Note that

$$C(u) = u(u-1)\dots(u-N+1)\,\pi_N(\operatorname{qdet} T(u)).$$

Theorem (KS). The coefficients d_1, d_2, \ldots of the series $q \det T(u)$ belong to the center $ZY(\mathfrak{gl}_N)$ of the algebra $Y(\mathfrak{gl}_N)$. Moreover, these elements are algebraically independent and generate $ZY(\mathfrak{gl}_N)$.

Note that

$$C(u) = u(u-1)\dots(u-N+1)\,\pi_N(\operatorname{qdet} T(u)).$$

Corollary. All coefficients of C(u) are Casimir elements for \mathfrak{gl}_N .

Quantum Liouville formula

Quantum Liouville formula

Consider the series z(u) with coefficients from $Y(\mathfrak{gl}_N)$ given by the formula

$$z(u)^{-1} = \frac{1}{N} \operatorname{tr} \left(T(u) T^{-1} (u - N) \right),$$

so that

$$z(u) = 1 + z_2 u^{-2} + z_3 u^{-3} + \dots$$
 where $z_i \in Y(\mathfrak{gl}_N)$.

Quantum Liouville formula

Consider the series z(u) with coefficients from $Y(\mathfrak{gl}_N)$ given by the formula

$$z(u)^{-1} = \frac{1}{N} \operatorname{tr} \left(T(u) T^{-1} (u - N) \right),$$

so that

$$z(u) = 1 + z_2 u^{-2} + z_3 u^{-3} + \dots$$
 where $z_i \in Y(\mathfrak{gl}_N)$.

Theorem (N). We have the relation

$$z(u) = \frac{\operatorname{qdet} T(u-1)}{\operatorname{qdet} T(u)}.$$

Application to \mathfrak{gl}_N

Application to \mathfrak{gl}_N

Recall the evaluation homomorphism $\pi_N : T(u) \mapsto 1 + E u^{-1}$:

$$\pi_N : z(-u+N)^{-1} \mapsto \frac{1}{N} \operatorname{tr} \left((1 - E(u-N)^{-1})(1 - Eu^{-1})^{-1} \right)$$
$$= 1 - \frac{1}{u-N} \sum_{k=1}^{\infty} \operatorname{tr} E^k u^{-k}.$$

Application to \mathfrak{gl}_N

Recall the evaluation homomorphism $\pi_N : T(u) \mapsto 1 + E u^{-1}$:

$$\pi_N : z(-u+N)^{-1} \mapsto \frac{1}{N} \operatorname{tr} \left((1 - E(u-N)^{-1})(1 - Eu^{-1})^{-1} \right)$$
$$= 1 - \frac{1}{u-N} \sum_{k=1}^{\infty} \operatorname{tr} E^k u^{-k}.$$

The quantum Liouville formula gives

$$z(u+1)^{-1}=\frac{\operatorname{qdet} T(u+1)}{\operatorname{qdet} T(u)}.$$

Applying the evaluation homomorphism to both sides of this relation, we get Newton's formula.

Twisted Yangians

Twisted Yangians

Consider the orthogonal Lie algebra \mathfrak{o}_N as the subalgebra of \mathfrak{gl}_N spanned by the skew-symmetric matrices. The elements $F_{ij} = E_{ij} - E_{ji}$ with i < j form a basis of \mathfrak{o}_N . Introduce the $N \times N$ matrix F whose ij-th entry is F_{ij} .

Twisted Yangians

Consider the orthogonal Lie algebra \mathfrak{o}_N as the subalgebra of \mathfrak{gl}_N spanned by the skew-symmetric matrices. The elements $F_{ij} = E_{ij} - E_{ji}$ with i < j form a basis of \mathfrak{o}_N . Introduce the $N \times N$ matrix F whose ij-th entry is F_{ij} .

The matrix elements of the powers of the matrix F are known to satisfy the relations

$$[F_{ij},(F^s)_{kl}] = \delta_{kj}(F^s)_{il} - \delta_{il}(F^s)_{kj} - \delta_{ik}(F^s)_{jl} + \delta_{lj}(F^s)_{ki}.$$

Introduce the generating series

$$f_{ij}(u) = \delta_{ij} + \sum_{r=1}^{\infty} (F^r)_{ij} \left(u + \frac{N-1}{2}\right)^{-r}.$$

Introduce the generating series

$$f_{ij}(u) = \delta_{ij} + \sum_{r=1}^{\infty} (F^r)_{ij} \left(u + \frac{N-1}{2}\right)^{-r}.$$

Then we have the relations

$$(u^{2} - v^{2}) [f_{ij}(u), f_{kl}(v)] = (u + v) (f_{kj}(u) f_{il}(v) - f_{kj}(v) f_{il}(u))$$
$$- (u - v) (f_{ik}(u) f_{jl}(v) - f_{ki}(v) f_{jj}(u))$$
$$+ f_{ki}(u) f_{jl}(v) - f_{ki}(v) f_{jl}(u).$$

Introduce the generating series

$$f_{ij}(u) = \delta_{ij} + \sum_{r=1}^{\infty} (F^r)_{ij} \left(u + \frac{N-1}{2} \right)^{-r}.$$

Then we have the relations

$$(u^{2} - v^{2}) [f_{ij}(u), f_{kl}(v)] = (u + v) (f_{kj}(u) f_{il}(v) - f_{kj}(v) f_{il}(u))$$
$$- (u - v) (f_{ik}(u) f_{jl}(v) - f_{ki}(v) f_{jj}(u))$$
$$+ f_{ki}(u) f_{jl}(v) - f_{ki}(v) f_{jl}(u).$$

Let $G = [g_{ij}]$ be a nonsingular (skew-)symmetric matrix.

The twisted Yangian $Y(g_N)$ is an associative algebra with generators $s_{ij}^{(1)}, \ s_{ij}^{(2)}, \dots$ where $1 \le i, j \le N$, and the defining relations written in terms of the generating series

$$s_{ij}(u) = g_{ij} + s_{ij}^{(1)}u^{-1} + s_{ij}^{(2)}u^{-2} + \dots$$

The twisted Yangian $Y(\mathfrak{g}_N)$ is an associative algebra with generators $s_{ij}^{(1)},\ s_{ij}^{(2)},\dots$ where $1\leqslant i,j\leqslant N$, and the defining relations written in terms of the generating series

$$s_{ij}(u) = g_{ij} + s_{ij}^{(1)}u^{-1} + s_{ij}^{(2)}u^{-2} + \dots$$

as follows

$$(u^{2} - v^{2}) [s_{ij}(u), s_{kl}(v)] = (u + v) (s_{kj}(u)s_{il}(v) - s_{kj}(v)s_{il}(u))$$

$$- (u - v) (s_{ik}(u)s_{jl}(v) - s_{ki}(v)s_{jl}(u))$$

$$+ s_{ki}(u)s_{jl}(v) - s_{ki}(v)s_{jl}(u)$$

The twisted Yangian $Y(\mathfrak{g}_N)$ is an associative algebra with generators $s_{ij}^{(1)},\ s_{ij}^{(2)},\dots$ where $1\leqslant i,j\leqslant N$, and the defining relations written in terms of the generating series

$$s_{ij}(u) = g_{ij} + s_{ij}^{(1)}u^{-1} + s_{ij}^{(2)}u^{-2} + \dots$$

as follows

$$(u^{2}-v^{2})[s_{ij}(u),s_{kl}(v)] = (u+v)(s_{kj}(u)s_{il}(v)-s_{kj}(v)s_{il}(u))$$
$$-(u-v)(s_{ik}(u)s_{jl}(v)-s_{ki}(v)s_{jl}(u))$$
$$+s_{ki}(u)s_{jl}(v)-s_{ki}(v)s_{jl}(u)$$

and

$$s_{ji}(-u) = \pm s_{ij}(u) + \frac{s_{ij}(u) - s_{ij}(-u)}{2u}.$$

Introduce the $N \times N$ matrix S(u) by

$$S(u) = \sum_{i,j=1}^{N} e_{ij} \otimes s_{ij}(u) \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{Y}(\mathfrak{g}_{N})[[u^{-1}]]$$

Introduce the $N \times N$ matrix S(u) by

$$S(u) = \sum_{i,j=1}^{N} e_{ij} \otimes s_{ij}(u) \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{Y}(\mathfrak{g}_{N})[[u^{-1}]]$$

The defining relations of $Y(g_N)$ have the form

$$R(u-v) S_1(u) R^t(-u-v) S_2(v) = S_2(v) R^t(-u-v) S_1(u) R(u-v)$$

Introduce the $N \times N$ matrix S(u) by

$$S(u) = \sum_{i,j=1}^{N} e_{ij} \otimes s_{ij}(u) \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{Y}(\mathfrak{g}_{N})[[u^{-1}]]$$

The defining relations of $Y(\mathfrak{g}_N)$ have the form

$$R(u-v) S_1(u) R^t(-u-v) S_2(v) = S_2(v) R^t(-u-v) S_1(u) R(u-v)$$

and

$$S^{t}(-u) = \pm S(u) + \frac{S(u) - S(-u)}{2u}.$$

Here

$$R(u) = 1 - Pu^{-1}$$

is the Yang R-matrix, while

$$R^t(u) = 1 - Qu^{-1}, \qquad Q = \sum_{i,j=1}^N e_{ij} \otimes e_{ij}.$$

Here

$$R(u) = 1 - Pu^{-1}$$

is the Yang R-matrix, while

$$R^{t}(u) = 1 - Qu^{-1}, \qquad Q = \sum_{i,j=1}^{N} e_{ij} \otimes e_{ij}.$$

The mapping

$$S(u) \mapsto T(u) G T^{t}(-u)$$

defines an embedding $Y(\mathfrak{g}_N) \hookrightarrow Y(\mathfrak{gl}_N)$.

Sklyanin determinant

Sklyanin determinant

The Sklyanin determinant is a series in u^{-1} defined by

$$\operatorname{sdet} S(u) = \gamma_{n,G}(u) \operatorname{qdet} T(u) \operatorname{qdet} T(-u + N - 1),$$

where

$$\gamma_{n,G}(u) = egin{cases} \det G & \text{if} & \mathfrak{g}_N = \mathfrak{o}_N, \\ & & \\ \dfrac{2u+1}{2u-2n+1} \det G & \text{if} & \mathfrak{g}_N = \mathfrak{sp}_{2n}. \end{cases}$$

Sklyanin determinant

The Sklyanin determinant is a series in u^{-1} defined by

sdet
$$S(u) = \gamma_{n,G}(u)$$
 qdet $T(u)$ qdet $T(-u + N - 1)$,

where

$$\gamma_{n,G}(u) = \begin{cases} \det G & \text{if} \quad \mathfrak{g}_N = \mathfrak{o}_N, \\ \\ \frac{2u+1}{2u-2n+1} \det G & \text{if} \quad \mathfrak{g}_N = \mathfrak{sp}_{2n}. \end{cases}$$

All coefficients of sdet S(u) are contained in $Y(\mathfrak{g}_N)$ and belong to the center of $Y(\mathfrak{g}_N)$.

Introduce the scalar $\gamma_n(u)$ by

$$\gamma_n(u) = \begin{cases} 1 & \text{if } \mathfrak{g}_N = \mathfrak{o}_N, \\ (-1)^n \frac{2u+1}{2u-2n+1} & \text{if } \mathfrak{g}_N = \mathfrak{sp}_{2n}. \end{cases}$$

Introduce the scalar $\gamma_n(u)$ by

$$\gamma_n(u) = \begin{cases} 1 & \text{if } \mathfrak{g}_N = \mathfrak{o}_N, \\ (-1)^n \frac{2u+1}{2u-2n+1} & \text{if } \mathfrak{g}_N = \mathfrak{sp}_{2n}. \end{cases}$$

Theorem (M). We have

$$\operatorname{sdet} S(u)$$

$$= \gamma_n(u) \sum_{p \in \mathfrak{S}_N} \operatorname{sgn} p p' \cdot s_{p(1), p'(1)}^t(-u) \dots s_{p(n), p'(n)}^t(-u+n-1)$$

$$\times s_{p(n+1), p'(n+1)}(u-n) \dots s_{p(N), p'(N)}(u-N+1).$$

Examples. For N = 2 we have

sdet
$$S(u) = \frac{1 \mp 2u}{1 - 2u} \left(s_{11}^t(-u) s_{22}(u-1) - s_{21}^t(-u) s_{12}(u-1) \right).$$

Examples. For N = 2 we have

sdet
$$S(u) = \frac{1 \mp 2u}{1 - 2u} (s_{11}^t(-u) s_{22}(u-1) - s_{21}^t(-u) s_{12}(u-1)).$$

If
$$N = 3$$
 then $sdet S(u) =$

$$s_{22}^{t}(-u) s_{11}(u-1) s_{33}(u-2) + s_{12}^{t}(-u) s_{31}(u-1) s_{23}(u-2) + s_{21}^{t}(-u) s_{32}(u-1) s_{13}(u-2) - s_{12}^{t}(-u) s_{21}(u-1) s_{33}(u-2) - s_{32}^{t}(-u) s_{11}(u-1) s_{23}(u-2) - s_{31}^{t}(-u) s_{22}(u-1) s_{13}(u-2).$$