Center at the critical level and commutative subalgebras

Alexander Molev

University of Sydney

Let $\mathfrak g$ be a simple Lie algebra over $\mathbb C$.

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} .

The adjoint action of $\,\mathfrak{g}\,$ on itself extends to the symmetric algebra $\,S(\mathfrak{g})\,$ by

$$Y \cdot X_1 \dots X_k = \sum_{i=1}^k X_1 \dots [Y, X_i] \dots X_k.$$

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C} .

The adjoint action of $\ \mathfrak{g}$ on itself extends to the symmetric algebra $S(\mathfrak{g})$ by

$$Y \cdot X_1 \dots X_k = \sum_{i=1}^k X_1 \dots [Y, X_i] \dots X_k.$$

The subalgebra of invariants is

$$\mathrm{S}(\mathfrak{g})^{\mathfrak{g}} = \{P \in \mathrm{S}(\mathfrak{g}) \mid Y \cdot P = 0 \quad \text{for all} \quad Y \in \mathfrak{g}\}.$$

Let $n = \operatorname{rank} \mathfrak{g}$. Then

$$S(\mathfrak{g})^{\mathfrak{g}}=\mathbb{C}[P_1,\ldots,P_n],$$

for certain algebraically independent invariants P_1, \ldots, P_n of certain degrees d_1, \ldots, d_n depending on \mathfrak{g} .

Let $n = \operatorname{rank} \mathfrak{g}$. Then

$$S(\mathfrak{g})^{\mathfrak{g}}=\mathbb{C}[P_1,\ldots,P_n],$$

for certain algebraically independent invariants P_1, \ldots, P_n of certain degrees d_1, \ldots, d_n depending on \mathfrak{g} .

We have the Chevalley isomorphism

$$\varsigma: \mathsf{S}(\mathfrak{g})^{\mathfrak{g}} \to \mathsf{S}(\mathfrak{h})^{W},$$

where \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} and W is its Weyl group.

For $\mathfrak{g}=\mathfrak{gl}_N$ set

$$E = \begin{bmatrix} E_{11} & \dots & E_{1N} \\ \vdots & & \vdots \\ E_{N1} & \dots & E_{NN} \end{bmatrix}$$

For $\mathfrak{g} = \mathfrak{gl}_N$ set

$$E = \begin{bmatrix} E_{11} & \dots & E_{1N} \\ \vdots & & \vdots \\ E_{N1} & \dots & E_{NN} \end{bmatrix}$$

and write

$$\det (u + E) = u^{N} + C_{1}u^{N-1} + \cdots + C_{N}.$$

For $\mathfrak{g} = \mathfrak{gl}_N$ set

$$E = \begin{bmatrix} E_{11} & \dots & E_{1N} \\ \vdots & & \vdots \\ E_{N1} & \dots & E_{NN} \end{bmatrix}$$

and write

$$\det (u + E) = u^{N} + C_{1}u^{N-1} + \dots + C_{N}.$$

Then
$$S(\mathfrak{gl}_N)^{\mathfrak{gl}_N} = \mathbb{C}[C_1, \dots, C_N]$$

For $\mathfrak{g} = \mathfrak{gl}_N$ set

$$E = \begin{bmatrix} E_{11} & \dots & E_{1N} \\ \vdots & & \vdots \\ E_{N1} & \dots & E_{NN} \end{bmatrix}$$

and write

$$\det (u + E) = u^{N} + C_{1}u^{N-1} + \dots + C_{N}.$$

Then $S(\mathfrak{gl}_N)^{\mathfrak{gl}_N} = \mathbb{C}[C_1,\ldots,C_N]$ and

$$\varsigma: \det(u+E) \mapsto (u+\lambda_1) \dots (u+\lambda_N), \qquad \lambda_i = E_{ii}.$$

We have

$$T_k=\operatorname{tr} E^k\in \mathrm{S}(\mathfrak{gl}_N)^{\mathfrak{gl}_N}$$

for all $k \geqslant 0$,

$$S(\mathfrak{gl}_N)^{\mathfrak{gl}_N} = \mathbb{C}[T_1,\ldots,T_N]$$

We have

$$T_k=\operatorname{tr} E^k\in \mathrm{S}(\mathfrak{gl}_N)^{\mathfrak{gl}_N}$$

for all $k \geqslant 0$,

$$S(\mathfrak{gl}_N)^{\mathfrak{gl}_N}=\mathbb{C}[T_1,\ldots,T_N]$$

and

$$\varsigma: T_k \mapsto \lambda_1^k + \cdots + \lambda_N^k.$$

We have

$$T_k = \operatorname{tr} E^k \in \mathrm{S}(\mathfrak{gl}_N)^{\mathfrak{gl}_N}$$

for all $k \ge 0$,

$$S(\mathfrak{gl}_N)^{\mathfrak{gl}_N} = \mathbb{C}[T_1,\ldots,T_N]$$

and

$$\varsigma: T_k \mapsto \lambda_1^k + \cdots + \lambda_N^k.$$

The invariants C_k and T_k are related by the Newton formulas.

Types B, C and D

Define the orthogonal Lie algebra \mathfrak{o}_N with N=2n and N=2n+1 and symplectic Lie algebra \mathfrak{sp}_N with N=2n as subalgebras of \mathfrak{gl}_N spanned by the elements F_{ij} ,

$$F_{ij} = E_{ij} - E_{j'i'}$$
 or $F_{ij} = E_{ij} - \varepsilon_i \, \varepsilon_j \, E_{j'i'}$.

Types B, C and D

Define the orthogonal Lie algebra \mathfrak{o}_N with N=2n and N=2n+1 and symplectic Lie algebra \mathfrak{sp}_N with N=2n as subalgebras of \mathfrak{gl}_N spanned by the elements F_{ij} ,

$$F_{ij} = E_{ij} - E_{j'i'}$$
 or $F_{ij} = E_{ij} - \varepsilon_i \varepsilon_j E_{j'i'}$.

We use the involution $i \mapsto i' = N - i + 1$ on the set $\{1, \dots, N\}$, and in the symplectic case set

$$arepsilon_i = \left\{ egin{array}{ll} 1 & \qquad \mbox{for} \quad i=1,\ldots,n \\ -1 & \qquad \mbox{for} \quad i=n+1,\ldots,2n. \end{array} \right.$$

The matrix $F = [F_{ij}]$ has the symmetry property F + F' = 0, where we use the transposition on matrices defined by

$$(X')_{ij} = X_{j'i'}$$
 or $(X')_{ij} = \varepsilon_i \varepsilon_j X_{j'i'}$.

The matrix $F = [F_{ij}]$ has the symmetry property F + F' = 0, where we use the transposition on matrices defined by

$$(X')_{ij} = X_{j'i'}$$
 or $(X')_{ij} = \varepsilon_i \varepsilon_j X_{j'i'}$.

Hence

$$\det(u+F) = (-1)^N \det(-u+F)$$

The matrix $F = [F_{ij}]$ has the symmetry property F + F' = 0, where we use the transposition on matrices defined by

$$(X')_{ij} = X_{j'i'}$$
 or $(X')_{ij} = \varepsilon_i \varepsilon_j X_{j'i'}$.

Hence

$$\det(u+F) = (-1)^N \det(-u+F)$$

and $\det (u+F) = \begin{cases} u^{2n} + C_1 u^{2n-2} + \dots + C_n & \text{if} \quad N=2n \\ u^{2n+1} + C_1 u^{2n-1} + \dots + C_n u & \text{if} \quad N=2n+1. \end{cases}$

$$\det(u+F) = \begin{cases} u^{2n+1} + C_1 u^{2n-1} + \dots + C_n u & \text{if } N = 2n+1 \end{cases}$$

The matrix $F = [F_{ij}]$ has the symmetry property F + F' = 0, where we use the transposition on matrices defined by

$$(X')_{ij} = X_{j'i'}$$
 or $(X')_{ij} = \varepsilon_i \varepsilon_j X_{j'i'}$.

Hence

$$\det(u+F) = (-1)^N \det(-u+F)$$

and
$$\det(u+F) = \begin{cases} u^{2n} + C_1 u^{2n-2} + \dots + C_n & \text{if} \quad N=2n \\ u^{2n+1} + C_1 u^{2n-1} + \dots + C_n u & \text{if} \quad N=2n+1. \end{cases}$$

If $g = o_{2n}$, then $C_n = \det F = (-1)^n (\operatorname{Pf} F)^2$ for the Pfaffian

$$\operatorname{Pf} F = \frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{S}_{2n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)'} \dots F_{\sigma(2n-1) \sigma(2n)'}.$$

The subalgebra of invariants is

$$\mathrm{S}(\mathfrak{g})^{\mathfrak{g}} = egin{cases} \mathbb{C}[C_1,\ldots,C_n] & & ext{for} & \mathfrak{g} = \mathfrak{o}_{2n+1}, & \mathfrak{sp}_{2n} \ \mathbb{C}[C_1,\ldots,C_{n-1},\mathrm{Pf}F] & & ext{for} & \mathfrak{g} = \mathfrak{o}_{2n}. \end{cases}$$

The subalgebra of invariants is

$$\mathrm{S}(\mathfrak{g})^{\mathfrak{g}} = egin{cases} \mathbb{C}\left[C_{1},\ldots,C_{n}
ight] & & ext{for} & \mathfrak{g} = \mathfrak{o}_{2n+1}, & \mathfrak{sp}_{2n} \ \mathbb{C}\left[C_{1},\ldots,C_{n-1},\operatorname{Pf} F
ight] & & ext{for} & \mathfrak{g} = \mathfrak{o}_{2n}. \end{cases}$$

Moreover, setting $\lambda_i = F_{ii}$ for i = 1, ..., n, we have

$$\varsigma: \det\left(u+F\right) \mapsto \begin{cases} (u-\lambda_1^2)\dots(u-\lambda_n^2) & \text{if} \quad N=2n\\ u(u-\lambda_1^2)\dots(u-\lambda_n^2) & \text{if} \quad N=2n+1. \end{cases}$$

The subalgebra of invariants is

$$\mathrm{S}(\mathfrak{g})^{\mathfrak{g}} = egin{cases} \mathbb{C}[C_1,\ldots,C_n] & \text{for} & \mathfrak{g} = \mathfrak{o}_{2n+1}, & \mathfrak{sp}_{2n} \ \mathbb{C}[C_1,\ldots,C_{n-1},\mathrm{Pf}\,F] & \text{for} & \mathfrak{g} = \mathfrak{o}_{2n}. \end{cases}$$

Moreover, setting $\lambda_i = F_{ii}$ for i = 1, ..., n, we have

$$\varsigma: \det (u+F) \mapsto \begin{cases} (u-\lambda_1^2) \dots (u-\lambda_n^2) & \text{if} \quad N=2n \\ u(u-\lambda_1^2) \dots (u-\lambda_n^2) & \text{if} \quad N=2n+1. \end{cases}$$

In the case $\mathfrak{g} = \mathfrak{o}_{2n}$,

$$\varsigma: \operatorname{Pf} F \mapsto \lambda_1 \dots \lambda_n.$$

The symmetric algebra $S(\mathfrak{g})$ of a Lie algebra \mathfrak{g} admits the Lie–Poisson bracket

$$\{X_i,X_j\} = \sum_{k=1}^l c_{ij}^{\,k} \, X_k, \qquad X_i \in \mathfrak{g} \quad \mathsf{basis \ elements}.$$

The symmetric algebra $S(\mathfrak{g})$ of a Lie algebra \mathfrak{g} admits the Lie–Poisson bracket $\frac{l}{2}$

$$\{X_i,X_j\} = \sum_{k=1}^l c_{ij}^{\ k} X_k, \qquad X_i \in \mathfrak{g} \quad \mathsf{basis \ elements}.$$

If $\mathfrak g$ is a simple Lie algebra with $n=\mathrm{rank}\,\mathfrak g$ then the subalgebra $\mathrm S(\mathfrak g)^{\mathfrak g}=\mathbb C[P_1,\dots,P_n] \text{ is Poisson commutative}.$

The symmetric algebra $S(\mathfrak{g})$ of a Lie algebra \mathfrak{g} admits the Lie–Poisson bracket

$$\{X_i,X_j\} = \sum_{k=1}^l c_{ij}^{\ k} X_k, \qquad X_i \in \mathfrak{g} \quad \mathsf{basis \ elements}.$$

If $\mathfrak g$ is a simple Lie algebra with $n=\mathrm{rank}\,\mathfrak g$ then the subalgebra $\mathrm{S}(\mathfrak g)^{\mathfrak g}=\mathbb C[P_1,\dots,P_n] \text{ is Poisson commutative}.$

Problem: Extend $S(\mathfrak{g})^{\mathfrak{g}}$ to a maximal Poisson commutative subalgebra of $S(\mathfrak{g})$.

Let $P = P(X_1, ..., X_l)$ be an element of $S(\mathfrak{g})$ of degree d.

Let $P = P(X_1, \dots, X_l)$ be an element of $S(\mathfrak{g})$ of degree d.

Fix any $\mu \in \mathfrak{g}^*$ and substitute

$$X_i \mapsto X_i z^{-1} + \mu(X_i),$$

where z is a variable:

$$P(X_1 z^{-1} + \mu(X_1), \dots, X_l z^{-1} + \mu(X_l))$$

$$= P^{(0)} z^{-d} + \dots + P^{(d-1)} z^{-1} + P^{(d)}.$$

Let $P = P(X_1, ..., X_l)$ be an element of $S(\mathfrak{g})$ of degree d.

Fix any $\mu \in \mathfrak{g}^*$ and substitute

$$X_i \mapsto X_i z^{-1} + \mu(X_i),$$

where z is a variable:

$$P(X_1 z^{-1} + \mu(X_1), \dots, X_l z^{-1} + \mu(X_l))$$

$$= P^{(0)} z^{-d} + \dots + P^{(d-1)} z^{-1} + P^{(d)}.$$

Denote by $\overline{\mathcal{A}}_{\mu}$ the subalgebra of $S(\mathfrak{g})$ generated by all elements $P^{(i)}$ associated with all invariants $P \in S(\mathfrak{g})^{\mathfrak{g}}$.

A. Mishchenko and A. Fomenko, 1978:

▶ The subalgebra $\overline{\mathcal{A}}_{\mu}$ is Poisson commutative for any $\mu \in \mathfrak{g}^*$.

A. Mishchenko and A. Fomenko, 1978:

- ▶ The subalgebra $\overline{\mathcal{A}}_{\mu}$ is Poisson commutative for any $\mu \in \mathfrak{g}^*$.
- If μ is a regular semi-simple element of $\mathfrak{g}^* \cong \mathfrak{g}$, then the elements

$$P_k^{(i)}, \qquad k = 1, \dots, n, \quad i = 0, 1, \dots, d_k - 1,$$

are algebraically independent generators of $\overline{\mathcal{A}}_{\mu}$

A. Mishchenko and A. Fomenko, 1978:

- ▶ The subalgebra $\overline{\mathcal{A}}_{\mu}$ is Poisson commutative for any $\mu \in \mathfrak{g}^*$.
- If μ is a regular semi-simple element of $\mathfrak{g}^* \cong \mathfrak{g}$, then the elements

$$P_k^{(i)}, \qquad k = 1, \dots, n, \quad i = 0, 1, \dots, d_k - 1,$$

are algebraically independent generators of $\overline{\mathcal{A}}_{\mu}$ so that $\overline{\mathcal{A}}_{\mu}$ has the maximal possible transcendence degree $(\dim \mathfrak{g} + \operatorname{rank} \mathfrak{g})/2$.

A. Tarasov, 2002:

If $\mu \in \mathfrak{g}^*$ is regular semi-simple then $\overline{\mathcal{A}}_{\mu}$ is a maximal Poisson commutative subalgebra of $S(\mathfrak{g})$.

A. Tarasov, 2002:

If $\mu \in \mathfrak{g}^*$ is regular semi-simple then $\overline{\mathcal{A}}_{\mu}$ is a maximal Poisson commutative subalgebra of $S(\mathfrak{g})$.

D. Panyushev and O. Yakimova, 2008:

This is true for any regular $\mu \in \mathfrak{g}^*$.

A. Tarasov, 2002:

If $\mu \in \mathfrak{g}^*$ is regular semi-simple then $\overline{\mathcal{A}}_{\mu}$ is a maximal Poisson commutative subalgebra of $S(\mathfrak{g})$.

D. Panyushev and O. Yakimova, 2008:

This is true for any regular $\mu \in \mathfrak{g}^*$.

B. Feigin, E. Frenkel and V. Toledano Laredo, 2010:

For any regular $\mu \in \mathfrak{g}^*$ the elements $P_k^{(i)}$ are free generators of $\overline{\mathcal{A}}_{\mu}$.

Example. For $\mathfrak{g} = \mathfrak{gl}_N$ set

$$E = \begin{bmatrix} E_{11} & \dots & E_{1N} \\ \vdots & & \vdots \\ E_{N1} & \dots & E_{NN} \end{bmatrix}, \qquad \mu = \begin{bmatrix} \mu_{11} & \dots & \mu_{1N} \\ \vdots & & \vdots \\ \mu_{N1} & \dots & \mu_{NN} \end{bmatrix}$$

Example. For $\mathfrak{g} = \mathfrak{gl}_N$ set

$$E = \begin{bmatrix} E_{11} & \dots & E_{1N} \\ \vdots & & \vdots \\ E_{N1} & \dots & E_{NN} \end{bmatrix}, \qquad \mu = \begin{bmatrix} \mu_{11} & \dots & \mu_{1N} \\ \vdots & & \vdots \\ \mu_{N1} & \dots & \mu_{NN} \end{bmatrix}$$

and write

$$\det(u + \mu + Ez^{-1}) = \sum_{0 \le i \le k \le N} C_k^{(i)} z^{-k+i} u^{N-k}.$$

Example. For $\mathfrak{g} = \mathfrak{gl}_N$ set

$$E = \begin{bmatrix} E_{11} & \dots & E_{1N} \\ \vdots & & \vdots \\ E_{N1} & \dots & E_{NN} \end{bmatrix}, \qquad \mu = \begin{bmatrix} \mu_{11} & \dots & \mu_{1N} \\ \vdots & & \vdots \\ \mu_{N1} & \dots & \mu_{NN} \end{bmatrix}$$

and write

$$\det(u + \mu + Ez^{-1}) = \sum_{0 \le i \le k \le N} C_k^{(i)} z^{-k+i} u^{N-k}.$$

The elements $C_k^{(i)}$ with $k=1,\ldots,N$ and $i=0,1,\ldots,k-1$ are algebraically independent generators of $\overline{\mathcal{A}}_{\mu}$ for regular μ .

Also write

$$\operatorname{tr} \left(\mu + E z^{-1} \right)^k = \sum_{i=0}^k T_k^{(i)} z^{-k+i}.$$

Also write

$$\operatorname{tr}(\mu + Ez^{-1})^k = \sum_{i=0}^k T_k^{(i)} z^{-k+i}.$$

All elements $T_k^{(i)}$ belong to the subalgebra $\overline{\mathcal{A}}_{\mu}$ of $S(\mathfrak{gl}_N)$.

Also write

$$\operatorname{tr} \left(\mu + E z^{-1} \right)^k = \sum_{i=0}^k T_k^{(i)} z^{-k+i}.$$

All elements $T_k^{(i)}$ belong to the subalgebra $\overline{\mathcal{A}}_{\mu}$ of $S(\mathfrak{gl}_N)$.

The elements $T_k^{(i)}$ with $k=1,\ldots,N$ and $i=0,1,\ldots,k-1$ are algebraically independent generators of $\overline{\mathcal{A}}_{\mu}$ for regular μ .

The Vinberg problem

E. Vinberg, 1990:

Is it possible to quantize the subalgebra $\overline{\mathcal{A}}_{\mu}$ of $S(\mathfrak{g})$?

The Vinberg problem

E. Vinberg, 1990:

Is it possible to quantize the subalgebra $\overline{\mathcal{A}}_{\mu}$ of $S(\mathfrak{g})$?

We would like to find a (maximal) commutative subalgebra \mathcal{A}_{μ} of $U(\mathfrak{g})$ (together with its free generators) such that $\operatorname{gr} \mathcal{A}_{\mu} = \overline{\mathcal{A}}_{\mu}$.

The Vinberg problem

E. Vinberg, 1990:

Is it possible to quantize the subalgebra $\overline{\mathcal{A}}_{\mu}$ of $S(\mathfrak{g})$?

We would like to find a (maximal) commutative subalgebra \mathcal{A}_{μ} of $U(\mathfrak{g})$ (together with its free generators) such that $\operatorname{gr} \mathcal{A}_{\mu} = \overline{\mathcal{A}}_{\mu}$.

M. Nazarov and G. Olshanski, 1996:

 \mathcal{A}_{μ} is produced for classical types, μ regular semi-simple.

Explicit free generators of \mathcal{A}_{μ} for $\mathfrak{g} = \mathfrak{gl}_N$:

A. Tarasov, 2000,

A. Chervov and D. Talalaev, 2006 (preprint).

Explicit free generators of A_{μ} for $\mathfrak{g} = \mathfrak{gl}_N$:

A. Tarasov, 2000,

A. Chervov and D. Talalaev, 2006 (preprint).

Positive solution of Vinberg's problem for any g:

L. Rybnikov, 2006, μ regular semi-simple,

Explicit free generators of A_{μ} for $\mathfrak{g} = \mathfrak{gl}_N$:

A. Tarasov, 2000,

A. Chervov and D. Talalaev, 2006 (preprint).

Positive solution of Vinberg's problem for any g:

L. Rybnikov, 2006, μ regular semi-simple,

B. Feigin, E. Frenkel and V. Toledano Laredo, 2010, μ any regular element.

Explicit free generators of A_{μ} for $\mathfrak{g} = \mathfrak{gl}_N$:

A. Tarasov, 2000,

A. Chervov and D. Talalaev, 2006 (preprint).

Positive solution of Vinberg's problem for any g:

L. Rybnikov, 2006, μ regular semi-simple,

B. Feigin, E. Frenkel and V. Toledano Laredo, 2010, μ any regular element.

The solution uses the Feigin–Frenkel center associated with $\widehat{\mathfrak{g}}.$

$$\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$$

$$\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$$

with the commutation relations

$$[X[r], Y[s]] = [X, Y][r+s] + r \delta_{r,-s} \langle X, Y \rangle K,$$

where $X[r] = Xt^r$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

$$\widehat{\mathfrak{g}}=\mathfrak{g}[t,t^{-1}]\oplus \mathbb{C}K$$

with the commutation relations

$$[X[r], Y[s]] = [X, Y][r+s] + r \delta_{r,-s} \langle X, Y \rangle K,$$

where $X[r] = Xt^r$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

For any $\kappa \in \mathbb{C}$ denote by $U_{\kappa}(\widehat{\mathfrak{g}})$ the quotient of $U(\widehat{\mathfrak{g}})$ by the ideal generated by $K - \kappa$.

$$\widehat{\mathfrak{g}}=\mathfrak{g}[t,t^{-1}]\oplus \mathbb{C}K$$

with the commutation relations

$$[X[r], Y[s]] = [X, Y][r+s] + r \delta_{r,-s} \langle X, Y \rangle K,$$

where $X[r] = Xt^r$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

For any $\kappa \in \mathbb{C}$ denote by $U_{\kappa}(\widehat{\mathfrak{g}})$ the quotient of $U(\widehat{\mathfrak{g}})$ by the ideal generated by $K - \kappa$.

The value $\kappa = -h^{\vee}$ corresponds to the critical level.

Feigin-Frenkel center

Consider the left ideal $I = U_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mathfrak{g}[t]$ and let

Norm
$$I = \{ v \in U_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mid Iv \subseteq I \}$$

be its normalizer.

Feigin-Frenkel center

Consider the left ideal $I = U_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mathfrak{g}[t]$ and let

Norm
$$I = \{ v \in U_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mid Iv \subseteq I \}$$

be its normalizer. This is a subalgebra of $U_{-h^{\vee}}(\widehat{\mathfrak{g}})$, and I is a two-sided ideal of Norm I.

Feigin-Frenkel center

Consider the left ideal $I = U_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mathfrak{g}[t]$ and let

Norm
$$I = \{ v \in U_{-h^{\vee}}(\widehat{\mathfrak{g}}) \mid Iv \subseteq I \}$$

be its normalizer. This is a subalgebra of $U_{-h^{\vee}}(\widehat{\mathfrak{g}})$, and I is a two-sided ideal of $Norm\ I$.

The Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is the associative algebra defined as the quotient

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \text{Norm I/I}.$$

$$V(\mathfrak{g}) = \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})/\mathrm{I}.$$

$$V(\mathfrak{g}) = \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})/\mathrm{I}.$$

Then

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \{ v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v = 0 \}.$$

$$V(\mathfrak{g}) = \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})/\mathrm{I}.$$

Then

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \{ v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v = 0 \}.$$

Note $V(\mathfrak{g}) \cong \mathrm{U} \big(t^{-1} \mathfrak{g}[t^{-1}] \big)$ as a vector space.

$$V(\mathfrak{g}) = \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})/\mathrm{I}.$$

Then

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \{ v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] v = 0 \}.$$

Note $V(\mathfrak{g}) \cong \mathrm{U} \big(t^{-1} \mathfrak{g}[t^{-1}] \big)$ as a vector space.

Hence, $\mathfrak{z}(\widehat{\mathfrak{g}})$ is a subalgebra of $U(t^{-1}\mathfrak{g}[t^{-1}])$.

Properties:

▶ The algebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ is commutative.

Properties:

- ► The algebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ is commutative.
- ▶ The subalgebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ of $U(t^{-1}\mathfrak{g}[t^{-1}])$ is invariant with respect to the translation operator T defined as the derivation T = -d/dt.

Properties:

- ► The algebra 3(g) is commutative.
- ▶ The subalgebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ of $U(t^{-1}\mathfrak{g}[t^{-1}])$ is invariant with respect to the translation operator T defined as the derivation T = -d/dt.

Any element of $\mathfrak{z}(\widehat{\mathfrak{g}})$ is called a Segal–Sugawara vector.

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in \mathrm{U}\big(t^{-1}\mathfrak{g}[t^{-1}]\big)$, $n = \mathrm{rank}\,\mathfrak{g}$, such that

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in \mathrm{U}\big(t^{-1}\mathfrak{g}[t^{-1}]\big)$, $n = \mathrm{rank}\,\mathfrak{g}$, such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^k S_l \mid l = 1, \dots, n, \ k \geqslant 0].$$

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in \mathrm{U}\big(t^{-1}\mathfrak{g}[t^{-1}]\big)$, $n = \mathrm{rank}\,\mathfrak{g}$, such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^k S_l \mid l = 1, \dots, n, \ k \geqslant 0].$$

Earlier work: R. Goodman and N. Wallach, 1989, type A;

T. Hayashi, 1988, types *A*, *B*, *C*; V. Kac and D. Kazhdan, 1979.

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in \mathrm{U}\big(t^{-1}\mathfrak{g}[t^{-1}]\big)$, $n = \mathrm{rank}\,\mathfrak{g}$, such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^k S_l \mid l = 1, \dots, n, \ k \geqslant 0].$$

Earlier work: R. Goodman and N. Wallach, 1989, type A;

T. Hayashi, 1988, types *A*, *B*, *C*; V. Kac and D. Kazhdan, 1979.

Detailed exposition: E. Frenkel, 2007.

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in \mathrm{U}\big(t^{-1}\mathfrak{g}[t^{-1}]\big)$, $n = \mathrm{rank}\,\mathfrak{g}$, such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^k S_l \mid l = 1, \dots, n, \ k \geqslant 0].$$

Earlier work: R. Goodman and N. Wallach, 1989, type A;

T. Hayashi, 1988, types *A*, *B*, *C*; V. Kac and D. Kazhdan, 1979.

Detailed exposition: E. Frenkel, 2007.

We call S_1, \ldots, S_n a complete set of Segal–Sugawara vectors.

Given any $\mu \in \mathfrak{g}^*$ and nonzero $z \in \mathbb{C}$ the mapping

$$\rho: \mathrm{U}\big(t^{-1}\mathfrak{g}[t^{-1}]\big) \to \mathrm{U}(\mathfrak{g})$$

Given any $\mu \in \mathfrak{g}^*$ and nonzero $z \in \mathbb{C}$ the mapping

$$\rho: \mathrm{U}\big(t^{-1}\mathfrak{g}[t^{-1}]\big) \to \mathrm{U}(\mathfrak{g})$$

such that

$$X[r] \mapsto Xz^r + \delta_{r,-1} \mu(X), \qquad X \in \mathfrak{g}, \qquad r < 0,$$

defines an algebra homomorphism.

Given any $\mu \in \mathfrak{g}^*$ and nonzero $z \in \mathbb{C}$ the mapping

$$\rho: \mathrm{U}\big(t^{-1}\mathfrak{g}[t^{-1}]\big) \to \mathrm{U}(\mathfrak{g})$$

such that

$$X[r] \mapsto Xz^r + \delta_{r,-1} \mu(X), \qquad X \in \mathfrak{g}, \qquad r < 0,$$

defines an algebra homomorphism.

Set $A_{\mu} = \rho(\mathfrak{z}(\widehat{\mathfrak{g}}))$, the image of the Feigin–Frenkel center.

Commutative subalgebras of $U(\mathfrak{g})$

Given any $\mu \in \mathfrak{g}^*$ and nonzero $z \in \mathbb{C}$ the mapping

$$\rho: \mathrm{U}\big(t^{-1}\mathfrak{g}[t^{-1}]\big) \to \mathrm{U}(\mathfrak{g})$$

such that

$$X[r] \mapsto Xz^r + \delta_{r,-1} \mu(X), \qquad X \in \mathfrak{g}, \qquad r < 0,$$

defines an algebra homomorphism.

Set $A_{\mu} = \rho(\mathfrak{z}(\widehat{\mathfrak{g}}))$, the image of the Feigin–Frenkel center.

 A_{μ} is a commutative subalgebra of $U(\mathfrak{g})$.

Properties:

▶ The algebra A_{μ} does not depend on z.

Properties:

- ▶ The algebra A_{μ} does not depend on z.
- $P(TS) = -\partial_z \rho(S).$

Properties:

- ▶ The algebra A_{μ} does not depend on z.

If S is a Segal-Sugawara vector of degree d, set

$$\rho(S) = S^{(0)} z^{-d} + \dots + S^{(d-1)} z^{-1} + S^{(d)}.$$

▶ The subalgebra A_{μ} of $U(\mathfrak{g})$ is maximal commutative.

- ▶ The subalgebra A_{μ} of $U(\mathfrak{g})$ is maximal commutative.
- ▶ If $S_1, ..., S_n$ is a complete set of Segal–Sugawara vectors of the respective degrees $d_1, ..., d_n$ then the elements

$$S_k^{(i)}, \qquad k = 1, \dots, n, \quad i = 0, 1, \dots, d_k - 1,$$

are algebraically independent generators of \mathcal{A}_{μ} .

- ▶ The subalgebra A_{μ} of $U(\mathfrak{g})$ is maximal commutative.
- ▶ If $S_1, ..., S_n$ is a complete set of Segal–Sugawara vectors of the respective degrees $d_1, ..., d_n$ then the elements

$$S_k^{(i)}, \qquad k = 1, \dots, n, \quad i = 0, 1, \dots, d_k - 1,$$

are algebraically independent generators of A_{μ} .

- ▶ The subalgebra A_{μ} of $U(\mathfrak{g})$ is maximal commutative.
- ▶ If $S_1, ..., S_n$ is a complete set of Segal–Sugawara vectors of the respective degrees $d_1, ..., d_n$ then the elements

$$S_k^{(i)}, \qquad k = 1, \dots, n, \quad i = 0, 1, \dots, d_k - 1,$$

are algebraically independent generators of \mathcal{A}_{μ} .

Conjecture (*loc. cit.*) The last claim holds for any $\mu \in \mathfrak{g}^*$.

Explicit construction of \mathcal{A}_{μ}

Use complete sets of Segal–Sugawara vectors S_1, \ldots, S_n produced in A. Chervov and D. Talalaev, 2006, and also A. Chervov and A. M., 2009 (in type A) and A. M., 2013 (types B, C and D).

For $\mathfrak{g} = \mathfrak{gl}_N$ set

$$E = egin{bmatrix} E_{11} & \dots & E_{1N} \ dots & & dots \ E_{N1} & \dots & E_{NN} \end{bmatrix}, \qquad \mu = egin{bmatrix} \mu_{11} & \dots & \mu_{1N} \ dots & & dots \ \mu_{N1} & \dots & \mu_{NN} \end{bmatrix}.$$

For $\mathfrak{g} = \mathfrak{gl}_N$ set

$$E = \begin{bmatrix} E_{11} & \dots & E_{1N} \\ \vdots & & \vdots \\ E_{N1} & \dots & E_{NN} \end{bmatrix}, \qquad \mu = \begin{bmatrix} \mu_{11} & \dots & \mu_{1N} \\ \vdots & & \vdots \\ \mu_{N1} & \dots & \mu_{NN} \end{bmatrix}.$$

Write

$$\operatorname{cdet}(-\partial_z + \mu + Ez^{-1}) = \sum_{\substack{0 \le i \le k}} \widehat{C}_k^{(i)} z^{-k+i} \partial_z^{N-k}$$

For $\mathfrak{g} = \mathfrak{gl}_N$ set

$$E = \begin{bmatrix} E_{11} & \dots & E_{1N} \\ \vdots & & \vdots \\ E_{N1} & \dots & E_{NN} \end{bmatrix}, \qquad \mu = \begin{bmatrix} \mu_{11} & \dots & \mu_{1N} \\ \vdots & & \vdots \\ \mu_{N1} & \dots & \mu_{NN} \end{bmatrix}.$$

Write

$$\operatorname{cdet}(-\partial_z + \mu + Ez^{-1}) = \sum_{0 \le i \le k \le N} \widehat{C}_k^{(i)} z^{-k+i} \partial_z^{N-k}$$

and

$$\operatorname{tr} \left(-\partial_z + \mu + E z^{-1} \right)^k 1 = \sum_{i=0}^k \widehat{T}_k^{(i)} z^{-k+i}.$$

Theorem. For any μ all elements $\widehat{C}_k^{(i)}$ and $\widehat{T}_k^{(i)}$ belong to the commutative subalgebra \mathcal{A}_μ of $\mathrm{U}(\mathfrak{gl}_N)$.

Theorem. For any μ all elements $\widehat{C}_k^{(i)}$ and $\widehat{T}_k^{(i)}$ belong to the commutative subalgebra \mathcal{A}_{μ} of $\mathrm{U}(\mathfrak{gl}_N)$.

If μ is regular, then the elements of each of these families with $k=1,\ldots,N$ and $i=0,1,\ldots,k-1$ are algebraically independent generators of \mathcal{A}_{μ} .

for \mathfrak{gl}_2 : $\operatorname{tr} E$, $\operatorname{tr} \mu E$, $\operatorname{tr} E^2$

for \mathfrak{gl}_2 : $\operatorname{tr} E$, $\operatorname{tr} \mu E$, $\operatorname{tr} E^2$ for \mathfrak{gl}_3 : $\operatorname{tr} E$, $\operatorname{tr} \mu E$, $\operatorname{tr} \mu^2 E$, $\operatorname{tr} E^2$, $\operatorname{tr} \mu E^2$, $\operatorname{tr} E^3$

for
$$\mathfrak{gl}_2$$
: $\operatorname{tr} E$, $\operatorname{tr} \mu E$, $\operatorname{tr} E^2$

for \mathfrak{gl}_3 : $\operatorname{tr} E$, $\operatorname{tr} \mu E$, $\operatorname{tr} \mu^2 E$, $\operatorname{tr} E^2$, $\operatorname{tr} \mu E^2$, $\operatorname{tr} E^3$

for \mathfrak{gl}_4 : $\operatorname{tr} E$, $\operatorname{tr} \mu E$, $\operatorname{tr} \mu^2 E$, $\operatorname{tr} \mu^3 E$, $\operatorname{tr} E^2$, $\operatorname{tr} \mu E^2$, $2\operatorname{tr} \mu^2 E^2 + \operatorname{tr} (\mu E)^2$, $\operatorname{tr} E^3$, $\operatorname{tr} \mu E^3$, $\operatorname{tr} E^4$.

Types B, C and D

The symmetric group \mathfrak{S}_m acts on the tensor space

Types B, C and D

The symmetric group \mathfrak{S}_m acts on the tensor space

$$\underbrace{\mathbb{C}^N \otimes \ldots \otimes \mathbb{C}^N}_m$$

by

$$(a,b) \mapsto P_{ab}, \qquad 1 \leqslant a < b \leqslant m,$$

Types B, C and D

The symmetric group \mathfrak{S}_m acts on the tensor space

$$\underbrace{\mathbb{C}^N \otimes \ldots \otimes \mathbb{C}^N}_m$$

by

$$(a,b) \mapsto P_{ab}, \qquad 1 \leqslant a < b \leqslant m,$$

where

$$P_{ab} = \sum_{i=1}^{N} 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (b-a-1)} \otimes e_{ji} \otimes 1^{\otimes (m-b)}.$$

Introduce the projection operators Q_{ab} on the tensor space

Introduce the projection operators Q_{ab} on the tensor space

$$\underbrace{\mathbb{C}^N \otimes \ldots \otimes \mathbb{C}^N}_{m}$$

by

$$Q_{ab} = \sum_{i,i=1}^{N} 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (b-a-1)} \otimes e_{i'j'} \otimes 1^{\otimes (m-b)}$$

in the orthogonal case,

Introduce the projection operators Q_{ab} on the tensor space

$$\underbrace{\mathbb{C}^N \otimes \ldots \otimes \mathbb{C}^N}_{m}$$

by

$$Q_{ab} = \sum_{i,j=1}^{N} 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (b-a-1)} \otimes e_{i'j'} \otimes 1^{\otimes (m-b)}$$

in the orthogonal case, and

$$Q_{ab} = \sum_{i,j=1}^{N} \varepsilon_{i} \varepsilon_{j} \, 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (b-a-1)} \otimes e_{i'j'} \otimes 1^{\otimes (m-b)}$$

in the symplectic case, where i' = N - i + 1.

Define the respective symmetrizer as the operator

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a < b \le m} \left(1 + \frac{P_{ab}}{b - a} - \frac{Q_{ab}}{N/2 + b - a - 1} \right),$$

Define the respective symmetrizer as the operator

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a \le b \le m} \left(1 + \frac{P_{ab}}{b - a} - \frac{Q_{ab}}{N/2 + b - a - 1} \right),$$

and

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a \le b \le m} \left(1 - \frac{P_{ab}}{b - a} - \frac{Q_{ab}}{n - b + a + 1} \right).$$

Define the respective symmetrizer as the operator

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a \le b \le m} \left(1 + \frac{P_{ab}}{b - a} - \frac{Q_{ab}}{N/2 + b - a - 1} \right),$$

and

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a \le b \le m} \left(1 - \frac{P_{ab}}{b - a} - \frac{Q_{ab}}{n - b + a + 1} \right).$$

Set

$$\gamma_m(\omega) = rac{\omega + m - 2}{\omega + 2m - 2}, \qquad \omega = egin{cases} N & \qquad ext{for} \quad \mathfrak{g} = \mathfrak{o}_N \ -2n & \qquad ext{for} \quad \mathfrak{g} = \mathfrak{sp}_{2n}. \end{cases}$$

Combine the generators of $\mathfrak{g} = \mathfrak{o}_N, \quad \mathfrak{sp}_N$ into the matrix

$$F = \sum_{i,j=1}^N e_{ij} \otimes F_{ij} \in \operatorname{End} \mathbb{C}^N \otimes \operatorname{U}(\mathfrak{g}).$$

Combine the generators of $\mathfrak{g} = \mathfrak{o}_N$, \mathfrak{sp}_N into the matrix

$$F = \sum_{i,j=1}^{N} e_{ij} \otimes F_{ij} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}(\mathfrak{g}).$$

Consider the tensor product algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_{\text{in}} \otimes \operatorname{U}(\mathfrak{g}).$$

Combine the generators of $\mathfrak{g} = \mathfrak{o}_N$, \mathfrak{sp}_N into the matrix

$$F = \sum_{i,j=1}^{N} e_{ij} \otimes F_{ij} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}(\mathfrak{g}).$$

Consider the tensor product algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_{m} \otimes \operatorname{U}(\mathfrak{g}).$$

For any $\mu \in \mathfrak{g}^*$ write

$$\gamma_m(\omega) \operatorname{tr} S^{(m)}(-\partial_z + \mu_1 + F_1 z^{-1}) \dots (-\partial_z + \mu_m + F_m z^{-1}) 1$$

$$= \sum_{i=0}^m L_m^{(i)} z^{-m+i}.$$

In the case of \mathfrak{o}_{2n} consider the Pfaffian

$$Pf(\mu + Fz^{-1}) = \frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{S}_{2n}} sgn \, \sigma \cdot (\mu + Fz^{-1})_{\sigma(1) \, \sigma(2)'} \dots (\mu + Fz^{-1})_{\sigma(2n-1) \, \sigma(2n)'}$$

$$= P^{(n)} + P^{(n-1)}z^{-1} + \dots + P^{(0)}z^{-n}.$$

In the case of \mathfrak{o}_{2n} consider the Pfaffian

$$Pf (\mu + Fz^{-1})$$

$$= \frac{1}{2^n n!} \sum_{\sigma \in \mathfrak{S}_{2n}} \operatorname{sgn} \sigma \cdot (\mu + Fz^{-1})_{\sigma(1) \sigma(2)'} \dots (\mu + Fz^{-1})_{\sigma(2n-1) \sigma(2n)'}$$

$$= P^{(n)} + P^{(n-1)}z^{-1} + \dots + P^{(0)}z^{-n}.$$

Theorem. For any $\mu \in \mathfrak{g}^*$ all elements $L_m^{(i)}$

(together with the $P^{(i)}$ in type D)

belong to the commutative subalgebra \mathcal{A}_{μ} of $\mathrm{U}(\mathfrak{g})$.

Theorem. Suppose $\mu \in \mathfrak{g}^*$ is regular.

Theorem. Suppose $\mu \in \mathfrak{g}^*$ is regular.

In types B and C the elements $L_m^{(0)},\ldots,L_m^{(m-1)}$ with $m=2,4,\ldots,2n$ are algebraically independent generators of the maximal commutative subalgebra \mathcal{A}_μ of $\mathrm{U}(\mathfrak{o}_{2n+1})$ and $\mathrm{U}(\mathfrak{sp}_{2n})$.

Theorem. Suppose $\mu \in \mathfrak{g}^*$ is regular.

In types B and C the elements $L_m^{(0)},\ldots,L_m^{(m-1)}$ with $m=2,4,\ldots,2n$ are algebraically independent generators of the maximal commutative subalgebra \mathcal{A}_μ of $\mathrm{U}(\mathfrak{o}_{2n+1})$ and $\mathrm{U}(\mathfrak{sp}_{2n})$.

In type D the elements $L_m^{(0)}, \ldots, L_m^{(m-1)}$ with $m = 2, 4, \ldots, 2n-2$ and $P^{(0)}, \ldots, P^{(n-1)}$ are algebraically independent generators of the maximal commutative subalgebra \mathcal{A}_{μ} of $\mathrm{U}(\mathfrak{o}_{2n})$.

for \mathfrak{o}_3 : $\operatorname{tr} \mu F$, $\operatorname{tr} F^2$

```
for \mathfrak{o}_3: \operatorname{tr} \mu F, \operatorname{tr} F^2
```

for
$$\mathfrak{o}_4$$
: $\operatorname{tr} \mu F$, $\operatorname{tr} F^2$, $P^{(0)}$, $P^{(1)}$

for
$$\mathfrak{o}_3$$
: ${\rm tr}\,\mu F, {\rm tr}\,F^2$
for \mathfrak{o}_4 : ${\rm tr}\,\mu F, {\rm tr}\,F^2, P^{(0)}, P^{(1)}$
for \mathfrak{o}_5 : ${\rm tr}\,\mu F, {\rm tr}\,F^2, {\rm tr}\,\mu^3 F, 2\,{\rm tr}\,\mu^2 F^2 + {\rm tr}\,(\mu F)^2, {\rm tr}\,\mu F^3, {\rm tr}\,F^4$

for
$$\mathfrak{o}_3$$
: $\operatorname{tr} \mu F$, $\operatorname{tr} F^2$
for \mathfrak{o}_4 : $\operatorname{tr} \mu F$, $\operatorname{tr} F^2$, $P^{(0)}$, $P^{(1)}$
for \mathfrak{o}_5 : $\operatorname{tr} \mu F$, $\operatorname{tr} F^2$, $\operatorname{tr} \mu^3 F$, $2 \operatorname{tr} \mu^2 F^2 + \operatorname{tr} (\mu F)^2$, $\operatorname{tr} \mu F^3$, $\operatorname{tr} F^4$
for \mathfrak{o}_6 : $\operatorname{tr} \mu F$, $\operatorname{tr} F^2$, $\operatorname{tr} \mu^3 F$, $2 \operatorname{tr} \mu^2 F^2 + \operatorname{tr} (\mu F)^2$, $\operatorname{tr} \mu F^3$, $\operatorname{tr} F^4$, $P^{(0)}$, $P^{(1)}$, $P^{(2)}$.

 $\quad \text{for} \quad \mathfrak{sp}_2: \qquad \text{tr}\, \mu F, \quad \text{tr}\, F^2$

for
$$\mathfrak{sp}_2$$
: $\operatorname{tr} \mu F$, $\operatorname{tr} F^2$ for \mathfrak{sp}_4 : $\operatorname{tr} \mu F$, $\operatorname{tr} F^2$,
$$\operatorname{tr} \mu^3 F, \quad 2 \operatorname{tr} \mu^2 F^2 + \operatorname{tr} (\mu F)^2, \quad \operatorname{tr} \mu F^3, \quad \operatorname{tr} F^4.$$