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Invariants in symmetric algebra

Let g be a simple Lie algebra over C.
The adjoint action of g on itself extends to the symmetric

algebra S(g) by

k
Y- X, ...Xk:ZXl L YLX] L X
i=1

The subalgebra of invariants is

S(g)!={PeS(g)|Y-P=0 forall Yeg}.



Let n = rank g. Then
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Let n = rank g. Then
S(g)? =CJ[Py,..., Py,

for certain algebraically independent invariants Py, ..., P, of
certain degrees di, ..., d, depending on g.

We have the Chevalley isomorphism
<:S(g)® — S()",

where b is a Cartan subalgebra of g and W is its Weyl group.
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Type A

For g = gly set
Ey ... Enn

and write
det(u+E)=u" +Cru" '+ + Cy.
Then  S(gly)® = C[Cy, ..., Cy] and

g:det(u+E)r—>(u+)\1)...(u+/\N), i = Ej;.
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We have

Ty = tr EX € S(gly)®™™

forall k> 0,

S(gly)™ = C[Ti, ..., Ty]

and

¢:Te— M4k

The invariants C, and T} are related by the Newton formulas.



Types B, C and D

Define the orthogonal Lie algebra oy with N = 2n and
N = 2n+ 1 and symplectic Lie algebra sp, with N = 2n as

subalgebras of gly spanned by the elements F;;,

Fij:Eij_Ej’i’ or Fij:Eij_Eingj’i'-



Types B, C and D

Define the orthogonal Lie algebra oy with N = 2n and
N = 2n+ 1 and symplectic Lie algebra spy with N = 2n as

subalgebras of gly spanned by the elements F;;,
Fij:Eij_Ej’i’ or Fij:Eij_EiEjEj’i’-

We use the involution i — i’ =N — i+ 1 onthe set {1,...,N},

and in the symplectic case set

g =



The matrix F = [F;;] has the symmetry property F + F' = 0,

where we use the transposition on matrices defined by

(XD)ij=Xpir - or (X')ij =5 Xpr.



The matrix F = [F;;] has the symmetry property F + F' = 0,

where we use the transposition on matrices defined by
(XD)ij=Xpir - or (X')ij =5 Xpr.

Hence det (i + F) = (—1)" det (—u+ F)



The matrix F = [F;;] has the symmetry property F + F' = 0,
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The matrix F = [F;;] has the symmetry property F + F' = 0,

where we use the transposition on matrices defined by

(Xl)ij = Xjrir or (X/)ij = ;€ Xjrir.
Hence N
det(u+F) = (—1)" det (—u + F)
and |
M2n+C1M2n_2+“-—|—Cn If N = 2n
det(u+F) =

M2n+l+clu2n—1+...+cnu if N=2n+1.

If g=o05,, then C, =det F = (—1)" (PfF)2 for the Pfaffian

1
PfF = ﬁ Z sgno - Fg(1)0(2)/ e Fcr(2n—l)o(2n)"
0662)1
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The subalgebra of invariants is

ClCy,...,Cy) for g= 0211, $Py,
S(9)? =
(C[C],...,Cn_l,PfF] for g = 02;.

Moreover, setting \; = F; for i=1,...,n, we have

(u—2A3) ... (u—A2) if N=2n
¢:det(u+F)+—

u(w—A3) ... (u—A2) if N=2n+1.

In the case g = 0y,,

C:PfF— A ...\
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Poisson commutative subalgebras

The symmetric algebra S(g) of a Lie algebra g admits
the Lie—Poisson bracket

1
{Xi, X} => ciX, X, €g basis elements.
k=1

If g is a simple Lie algebra with n = rank g then the subalgebra

S(g)? = C[Py, ..., P,] is Poisson commutative.

Problem: Extend S(g)? to a maximal Poisson commutative

subalgebra of S(g).
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Let P = P(Xy,...,X;) be an element of S(g) of degree d.

Fix any p € g* and substitute
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where z is a variable:
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Let P = P(Xy,...,X;) be an element of S(g) of degree d.

Fix any p € g* and substitute
X Xz 4 p(X),
where z is a variable:
P(Xiz "+ pXy),. . X 4 (X))

= P(O) Zid + .o+ P(dfl) Zil + P(d)_

Denote by A, the subalgebra of S(g) generated by all elements

PU) associated with all invariants P € S(g)?.



A. Mishchenko and A. Fomenko, 1978:

» The subalgebra A, is Poisson commutative for any ;. € g*.



A. Mishchenko and A. Fomenko, 1978:

» The subalgebra A, is Poisson commutative for any ;. € g*.

» If uis a regular semi-simple element of g* = g,

then the elements
PO k=1,...n, i=0,1,....d 1,

are algebraically independent generators of A,



A. Mishchenko and A. Fomenko, 1978:

» The subalgebra A, is Poisson commutative for any ;. € g*.

» If uis a regular semi-simple element of g* = g,

then the elements
PO k=1,...n, i=0,1,....d 1,

are algebraically independent generators of A,

so that A4, has the maximal possible transcendence

degree (dim g + rank g) /2.
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A. Tarasov, 2002:

If 1 € g* is reqular semi-simple then A,, is a maximal Poisson
reg 7

commutative subalgebra of S(g).

D. Panyushev and O. Yakimova, 2008:

This is true for any regular i € g*.

B. Feigin, E. Frenkel and V. Toledano Laredo, 2010:
For any regular u € g* the elements P,(f)

are free generators of A,.
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Example. For g = gly set

Ey ... Ewn Hyp eee Mgy

ENI . ENN Hyr -+ Hyn

and write
det(u+p+Ez ") = Z C,Ei) RNk,

The elements C,(Ci) withk=1,....Nandi=0,1,...,k— 1 are

algebraically independent generators of A, for regular 4.



Also write

k
tr(p+ Ezfl)k = Z T,El) s
i=0



Also write

k
r(p+Ez"! ZT’ s
i=0

All elements T,Ei) belong to the subalgebra A, of S(gly).



Also write

k
tr (1 +Ez ! ZT’ P
i=0

All elements T,Ei) belong to the subalgebra A, of S(gly).

The elements T,Ei) withk=1,....Nandi=0,1,...,k— 1 are

algebraically independent generators of A, for regular 4.
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The Vinberg problem

E. Vinberg, 1990:

Is it possible to quantize the subalgebra A, of S(g)?

We would like to find a (maximal) commutative subalgebra A,

of U(g) (together with its free generators) such that gr.A,, = A,,.

M. Nazarov and G. Olshanski, 1996:

A, is produced for classical types, ;. regular semi-simple.
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Explicit free generators of A, for g = gly:
A. Tarasov, 2000,

A. Chervov and D. Talalaev, 2006 (preprint).
Positive solution of Vinberg’s problem for any g:
L. Rybnikov, 2006, p regular semi-simple,
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Explicit free generators of A, for g = gly:
A. Tarasov, 2000,

A. Chervov and D. Talalaev, 2006 (preprint).

Positive solution of Vinberg’s problem for any g:
L. Rybnikov, 2006, u regular semi-simple,
B. Feigin, E. Frenkel and V. Toledano Laredo, 2010,

1 any regular element.

The solution uses the Feigin—Frenkel center associated with g.
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The affine Kac—Moody algebra g is the central extension
g=glt,r JoCK
with the commutation relations
(X[r], Y[s]] = X, Y][r+s] +ré, (X, Y)K,
where X[r] = Xt" forany X e gand r € Z.

For any « € C denote by U,(g) the quotient of U(g) by the ideal
generated by K — k.

The value k = —h" corresponds to the critical level.
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Feigin—Frenkel center

Consider the left ideal 1=U_,v(g)g[f] and let
NormI = {v € U_,v(g) | Iv C I}

be its normalizer. This is a subalgebra of U_,v(g), and

I is a two-sided ideal of Norm L.

The Feigin—Frenkel center 3(g) is the associative algebra

defined as the quotient

3(g) = NormI/L.
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Equivalently, consider the vacuum module at the critical level

V(g) = U_v(g)/L

Then

3(8) = {ve V(g) | glt]v = 0}.

Note V(g) = U(r'g[+"']) as a vector space.

Hence, ;(g) is asubalgebraof U(: 'g[r™']).
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Properties:

» The algebra 3(g) is commutative.

» The subalgebra 3(g) of U(r~'g[r~"]) is invariant with
respect to the translation operator T defined as the

derivation T = —d/dt.

Any element of 3(g) is called a Segal-Sugawara vector.
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Theorem (Feigin—Frenkel, 1992).
There exist Segal-Sugawara vectors Si,...,S, € U(r'g[r']),

n =rank g, such that

A~

3@ =C[Trs [ 1=1,...,n, k>0].

Earlier work: R. Goodman and N. Wallach, 1989, type A;
T. Hayashi, 1988, types A, B, C; V. Kac and D. Kazhdan, 1979.

Detailed exposition: E. Frenkel, 2007.

We call Sy, ..., S, a complete set of Segal-Sugawara vectors.
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Commutative subalgebras of U(g)

Given any p € g* and nonzero z € C the mapping
p: U glr']) = Ulg)
such that
X[r] = X7" 46, _y p(X), X eg, r<o0,

defines an algebra homomorphism.
Set A, = p(3(g)), the image of the Feigin-Frenkel center.

A, is a commutative subalgebra of U(g).
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Properties:

» The algebra A, does not depend on z.
> p(TS) = —0.p(S).

If S is a Segal-Sugawara vector of degree d, set

p(S) = 5(0) A gd=1) Fan s
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Theorem (R., 2006; FFTL, 2010). Let i € g* be regular.

» The subalgebra A, of U(g) is maximal commutative.

» If S1,...,S, is a complete set of Segal-Sugawara vectors

of the respective degrees dy, .. ., d, then the elements
SO k=1,...n, i=0,1,...,d—1,

are algebraically independent generators of A,,.
»ar A, =A,.

Conjecture (loc. cit.) The last claim holds for any u € g*.



Explicit construction of A,

Use complete sets of Segal-Sugawara vectors Sy, ..., S,
produced in A. Chervov and D. Talalaev, 2006,
and also A. Chervov and A. M., 2009 (in type A)

and A. M., 2013 (types B, C and D).
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For g = gl set

Ell EIN H1q :LLIN
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Write



For g = gl set

Ell EIN H1q :LLIN
E = s M =
ENI e ENN ,U,Nl e KN
Write
— () — 1 —k
cdet(=0, +p+Ez ") = Z k(l)z krigN
0<i<k<N
and



Theorem. For any 1 all elements C” and 7" belong to the

commutative subalgebra A, of U(gly).



Theorem. For any 1 all elements C” and 7" belong to the

commutative subalgebra A, of U(gly).

If 1 is regular, then the elements of each of these families with
k=1,...,Nandi=0,1,...,k— 1 are algebraically

independent generators of A,,.
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Examples. We get the following algebraically independent

generators of the algebra A, for regular

for gl,: trE, trpE, trE?

for gls: trE, trpE, trp’E, trE? trpE’, tE



Examples. We get the following algebraically independent

generators of the algebra A, for regular

for gl,: trE, trpE, trE?
for gls: trE, trpE, trp’E, trE? trpE’, tE
for gly: trE, trpE, trp’E, trp’E, twE?,  trpE?

2tr p2E? +tr (pE)?, wE, wpE, tEY
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Types B, C and D

The symmetric group &,, acts on the tensor space

CV®...9CV
|
m
by
(a,b) — Pyp, I <a<b<m,
where
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Introduce the projection operators Q,, on the tensor space

CVNe...oCV
—_—

m

by

N
OQup = Z 1261 g €ij & 19¢—a-1) g ejrjr & 1@0m=b)
ij=1

in the orthogonal case, and

N
Oup = Z Ei€j 1®(a=1) ®e;j® 1&(b—a=1) ® e @ 1&(m=b)
ij=1

in the symplectic case, where i’ =N — i+ 1.



Define the respective symmetrizer as the operator

(m) _ 1 Pab B Qab
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Define the respective symmetrizer as the operator

(m) _ 1 Pab B Qab
S om! H (1+b—a N/2—|—b—a—1)’

" 1<a<b<m

and




Define the respective symmetrizer as the operator

1 Pb Qab
stm — L (142 - ).
mllgggm Jrb—a N/24+b—a—1
and
S(m):i H (17 Pab . Qab )
m'1<a<b<m b—a n-bta+l
Set
() w+m=—2 N for g=on
_ W =
Ame w+2m—2’

—2n for g=sp,,.
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Combine the generators of g = oy, spy into the matrix

N
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m




Combine the generators of g = oy, spy into the matrix

N
F= Z ejj @ Fjj € EndCV ® U(g).
ij=1

Consider the tensor product algebra

EndC" @ ... ® EndC" @ U(g).

m

For any p € g* write
(@) tr ST (=0, + py + Fiz7 ") . (=8, 4 i,y + Fnz ™) 1

— il”(é) Z—m+i‘

i=0



In the case of 0,, consider the Pfaffian

Pf(u+Fz ")

1
2np!

> sgno - (m+Fz omye@y - (1 + F2o@as1)o(ny
0662,,

— P(”) +P(n_1)Z_1 4o _}_P(O)Z—”.



In the case of 0,, consider the Pfaffian

Pf(u+Fz ")

1
2np!

> sgno - (m+Fz omye@y - (1 + F2o@as1)o(ny
0'662,,

— P(”) +P(n_1)Z_1 4o _}_P(O)Z—”.

Theorem. For any p € g* all elements Ly
(together with the P() in type D)

belong to the commutative subalgebra A, of U(g).



Theorem. Suppose i € g* is regular.



Theorem. Suppose i € g* is regular.

In types B and C the elements L, ..., L% with
m= 2,4 ...,2n are algebraically independent generators of the

maximal commutative subalgebra A, of U(02,+1) and U(sp,,).



Theorem. Suppose i € g* is regular.

In types B and C the elements L, ..., L% with
m= 2,4 ...,2n are algebraically independent generators of the

maximal commutative subalgebra A, of U(02,+1) and U(sp,,).

In type D the elements L\, ..., LY

withm=2,4,...,2n—2
and PO, ... P"=1 are algebraically independent generators of

the maximal commutative subalgebra A, of U(o,,).
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generators of the algebra A, for regular p:

for 03 : trluF7 ter
for o4 : truF, ter, ]3(0)7 p)
for os: trpF, wF?, tp’F, 2t p’F? +tr(pF)?,

truF3, tr F*



Examples. We get the following algebraically independent

generators of the algebra A, for regular p:

for 03 : trpF, ter

for o4: wpF, wr?, PO, pl

for os: wpF, wF, wi'F, 2uplF 4 (uF),
tr,uF3, tr F*

for o : trpF, twF?, trp’F, 2t p?F? +tr (pF)?,

wpF, wrt, pO pl  p@,



Examples. We get the following algebraically independent

generators of the algebra A,, for regular p:

for sp,: truF, trF?



Examples. We get the following algebraically independent

generators of the algebra A,, for regular p:

for sp,: truF, trF?

for sp,: truF, trF?

tr°F, 2trp?F? +tr (pF)?, trpF?, twF*



