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Affine Kac–Moody algebras

Let g be a simple Lie algebra over C .

Consider the standard invariant bilinear form on g

〈X,Y〉 =
1

2h∨
tr(ad X ad Y),

where h∨ is the dual Coxeter number.

For the classical types,

h∨ =



n for g = sln,

N − 2 for g = oN ,

n + 1 for g = sp2n.
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The affine Kac–Moody algebra ĝ is the central extension

ĝ = g[t, t−1]⊕ CK

with the commutation relations

[
X[r],Y[s]

]
= [X,Y][r + s] + r δr,−s〈X,Y〉K,

where X[r] = X t r for any X ∈ g and r ∈ Z .

The vacuum module at the critical level V(g) over ĝ is the

quotient of the universal enveloping algebra U(ĝ) by the left

ideal generated by g[t] and K + h∨.
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Feigin–Frenkel center

The Feigin–Frenkel center z(ĝ) is the algebra

z(ĝ) = End ĝ V(g).

Equivalently,

z(ĝ) = V(g)g[t] = {v ∈ V(g) | g[t]v = 0}.

The algebra z(ĝ) is commutative.
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z(ĝ) = V(g)g[t] = {v ∈ V(g) | g[t]v = 0}.
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As a vector space, the vacuum module V(g) can be identified

with the universal enveloping algebra U
(
t−1g[t−1]

)
.

Then the Feigin–Frenkel center z(ĝ) can be regarded as a

commutative subalgebra of U
(
t−1g[t−1]

)
.

Define the translation operator T : V(g)→ V(g)

as the derivation T = −∂t.

The subspace z(ĝ) of V(g) is T-invariant.

Any element of z(ĝ) is called a Segal–Sugawara vector.
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Theorem (Feigin–Frenkel, 1992).

There exist Segal–Sugawara vectors S1, . . . , Sn ∈ U(t−1g[t−1])

such that

z(ĝ) = C [T kSl | l = 1, . . . , n, k > 0],

where n = rank g and the symbols S1, . . . , Sn coincide with the

images of certain algebraically independent generators of the

algebra of invariants S(g)g under the embedding

S(g) ↪→ S(t−1g[t−1]) defined by X 7→ X[−1].

We call S1, . . . , Sn a complete set of Segal–Sugawara vectors.
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A detailed proof is explained in the book by

E. Frenkel, Langlands correspondence for loop groups, 2007.

Let P = P(Y1, . . . ,Yl) be a g-invariant in S(g).

Set Yi(z) =
∑
r<0

Yi[r]z−r−1 and write

P
(
Y1(z), . . . ,Yl(z)

)
=
∑
r<0

P(r) z−r−1.

Then each P(r) is a g[t]-invariant in S
(
t−1g[t−1]

)
.

Moreover, k! P(−k−1) = T k P
(
Y1[−1], . . . ,Yl[−1]

)
for k > 0.
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Theorem (Beilinson–Drinfeld, 1997). If P1, . . . ,Pn are

algebraically independent generators of S(g)g, then the

elements P1,(r), . . . ,Pn,(r) with r < 0 are algebraically

independent generators of S
(
t−1g[t−1]

)g[t].

Earlier work: R. Goodman and N. Wallach, 1989, type A;

T. Hayashi, 1988, types A, B, C; V. Kac and D. Kazhdan, 1979.
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Explicit formulas for Segal–Sugawara vectors

They will lead, in particular, to a simpler proof of the

Feigin–Frenkel theorem for classical types.

We will need the extended Lie algebra ĝ⊕ Cτ , where for the

element τ = −∂t we have the relations

[
τ,X[r]

]
= −r X[r − 1],

[
τ,K

]
= 0.



Explicit formulas for Segal–Sugawara vectors

They will lead, in particular, to a simpler proof of the

Feigin–Frenkel theorem for classical types.

We will need the extended Lie algebra ĝ⊕ Cτ , where for the
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Type A

Lie algebra g = gln, the standard basis {Eij | i, j = 1, . . . , n}.

Consider the n× n matrix τ + E[−1] given by

τ + E[−1] =



τ + E11[−1] E12[−1] . . . E1n[−1]

E21[−1] τ + E22[−1] . . . E2n[−1]

...
...

. . .
...

En1[−1] En2[−1] . . . τ + Enn[−1]


.
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Theorem (Chervov–Talalaev, 2006; also Chervov–M., 2009).

The coefficients S1, . . . , Sn of the polynomial

cdet
(
τ + E[−1]

)
= τ n + S1 τ

n−1 + · · ·+ Sn−1 τ + Sn

form a complete set of Segal–Sugawara vectors in V(gln).

Example. For n = 2

cdet
(
τ + E[−1]

)
=
(
τ + E11[−1]

)(
τ + E22[−1]

)
− E21[−1]E12[−1]

= τ 2 + S1 τ + S2

with

S1 = E11[−1] + E22[−1],

S2 = E11[−1] E22[−1]− E21[−1] E12[−1] + E22[−2].
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Corollary. For any k > 0 all coefficients Pk l in the expansion

tr(τ + E[−1])k = Pk 0 τ
k + Pk 1 τ

k−1 + · · ·+ Pk k

are Segal–Sugawara vectors in V(gln).

Moreover, the elements P11, . . . ,Pnn form a complete set of

Segal–Sugawara vectors.

Remark. These results generalize to the Lie superalgebra glm|n.

The column-determinant is replaced by a noncommutative

Berezinian (M.–Ragoucy, 2009).
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Types B, C and D

The orthogonal Lie algebra oN of skew-symmetric matrices is

the subalgebra of glN spanned by the elements Fij = Eij − Eji.

Denote by F the N × N matrix whose (i, j) entry is Fij. Regard F

as the element

F =
N∑

i,j=1

eij ⊗ Fij ∈ EndCN ⊗ U(oN).

Introduce elements of EndCN ⊗ EndCN ∼= End (CN ⊗ CN) by

P =

N∑
i,j=1

eij ⊗ eji, Q =

N∑
i,j=1

eij ⊗ eij.
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The defining relations of the algebra U(oN) have the form

F1 F2 − F2 F1 = (P− Q) F2 − F2 (P− Q)

together with the relation F + F t = 0,

where both sides are

regarded as elements of the algebra EndCN ⊗ EndCN ⊗ U(oN)

and

F1 =
N∑

i,j=1

eij ⊗ 1⊗ Fij, F2 =
N∑

i,j=1

1⊗ eij ⊗ Fij.
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In the affine Kac–Moody algebra ôN = oN [t, t−1]⊕ CK set

Fij[r] = Fij tr for any r ∈ Z .

Introduce the matrix F[r] =
[
Fij[r]

]
and regard it as the element

F[r] =
N∑

i,j=1

eij ⊗ Fij[r] ∈ EndCN ⊗ U(ôN).

The defining relations of the algebra U(ôN) can be written as

F[r]1 F[s]2 − F[s]2 F[r]1 = (P− Q) F[r + s]2 − F[r + s]2 (P− Q)

+ rδr,−s (P− Q)K.
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Consider the N × N matrix Φ = τ + F[−1],

Φ =



τ F12[−1] . . . F1N [−1]

F21[−1] τ . . . F2N [−1]

...
...

. . .
...
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For each a ∈ {1, . . . ,m} define the element Φa of the algebra

EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

⊗ U
(
ôN ⊕ Cτ

)

by

Φa =
N∑

i,j=1

1⊗(a−1) ⊗ ei j ⊗ 1⊗(m−a) ⊗ Φi j,

where Φi j = δi jτ + Fi j[−1].

The trace map tr : EndCN → C is defined by tr : eij 7→ δij.
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Introduce the element S(m) of the algebra

EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

by

S(m) =
1
m!

∏
16a<b6m

(
1 +

Pab

b− a
− Qab

N/2 + b− a− 1

)
,

the product is taken in the lexicographic order on the pairs

(a, b), and Pab and Qab act as the respective operators P and Q

in the a-th and b-th copies of CN and as the identity operators in

all the remaining copies.
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Properties: for 1 6 a < b 6 m we have

Pab S(m) = S(m) Pab = S(m) and Qab S(m) = S(m) Qab = 0.

Equivalent formula:
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1
m!

∏
16a<b6m

(
1− Qab

N + a + b− 3
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16a<b6m

(
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b− a
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.

Remark. S(m) is the idempotent associated with the trivial

representation of the Brauer algebra Bm(N). In particular,

(S(m))2 = S(m).
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In a reduced form,

S(m) = H(m)

bm/2c∑
r=0

(−1)r

2 r r!

(
N/2 + m− 2

r

)−1 ∑
ai<bi

Qa1 b1 . . .Qar br ,

where H(m) is the symmetrizer in the group algebra C [Sm].

In terms of the Jucys–Murphy elements:

S(m) =
m∏

b=2

1
b(N + 2b− 4)

(
1 +

b−1∑
a=1

(Pab − Qab)
)

×
(

N + b− 3 +

b−1∑
a=1

(Pab − Qab)
)
.
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Theorem. The elements φma ∈ U(t−1oN [t−1]) defined by

tr S(m)Φ1 . . .Φm = φm 0 τ
m + φm 1 τ

m−1 + · · ·+ φmm

are Segal–Sugawara vectors for oN .

Moreover, φ22, φ44, . . . , φ2n 2n is a complete set of

Segal–Sugawara vectors for o2n+1,

φ22, φ44, . . . , φ2n−2 2n−2, φ
′
n is a complete set of

Segal–Sugawara vectors for o2n, where φ ′n = Pf F[−1] is the

Pfaffian of the skew-symmetric matrix F[−1].
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Example. For m = 2 we have

S(2) =
1 + P

2
− Q

N
.

Note the relations tr1 P = 1 and tr1 Q = 1.

Hence, φ2 2 is found from

tr S(2)Φ1Φ2 =
1
2
(
tr (τ + F[−1])

)2
+

1
2

tr (τ + F[−1])2

− 1
N

tr (τ − F[−1])(τ + F[−1])

=
N + 2

2N

(
(N2 − N)τ 2 + tr F[−1]2

)
.
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In the case of o2n the Pfaffian Pf F[−1] is

Pf F[−1] =
∑
σ

sgnσ · Fσ(1)σ(2)[−1] . . .Fσ(2n−1)σ(2n)[−1],

summed over the permutations σ ∈ S2n such that

σ(1) < σ(2), σ(3) < σ(4), . . . , σ(2n− 1) < σ(2n) and

σ(1) < σ(3) < · · · < σ(2n− 1).

Example. For o4 we have

Pf F[−1] = F1 2[−1] F3 4[−1]− F1 3[−1] F2 4[−1] + F1 4[−1] F2 3[−1].
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For the proof of the theorem we show that

F[0]0 tr S(m)Φ1 . . .Φm = 0 and F[1]0 tr S(m)Φ1 . . .Φm = 0

in the module

EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m+1

⊗V(oN)[τ ]

with the copies of EndCN labelled by 0, 1, . . . ,m.
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For the symbols of the Segal–Sugawara vectors φ2k 2k find

tr S(2k)X1 . . .X2k, X ∈ oN .

Suppose that the eigenvalues of X are

x1, . . . , xn,−x1, . . . ,−xn, 0 if N = 2n + 1,

x1, . . . , xn,−x1, . . . ,−xn if N = 2n.

Then

tr S(2k)X1 . . .X2k =
N + 4k − 2
N + 2k − 2

hk(x2
1, . . . , x

2
n),

hk is the complete symmetric polynomial.
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Vertex algebra structure

The vacuum module V(g) is a vertex algebra with

the vacuum vector 1,

the translation operator T = −∂t,

and the state-field correspondence Y which is a linear map

Y : V(g)→ End V(g)[[z, z−1]].

It is determined by

Y(X[−1], z) =
∑
r∈Z

X[r]z−r−1 =: X(z).
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For any ri > 0 we have

Y(X1[−r1 − 1] . . .Xm[−rm − 1], z)

=
1

r1! . . . rm!
: ∂ r1

z X1(z) . . . ∂ rm
z Xm(z) :,

with the convention that the normally ordered product is read

from right to left;

: a(z)b(w) : = a(z)+b(w) + b(w)a(z)−,

where

a(z)+ =
∑
r>0

ar zr and a(z)− =
∑
r<0

ar zr.
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Suppose that S1, . . . , Sn is a complete set of Segal–Sugawara

vectors in z(ĝ). Apply the state-field correspondence map:

Y(Sl, z) =
∑
r∈Z

Sl,r z−r−1.

The elements Sl,r are Sugawara operators for ĝ. They generate

the center of the completed algebra U(ĝ) at the critical level.

Applications: Singular vectors in Verma modules and Weyl

modules over ĝ (E. Frenkel and D. Gaitsgory, 2006, 2007).
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Applications: Singular vectors in Verma modules and Weyl
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Example.

Apply Y to the Segal–Sugawara vector tr F[−1]2 for ôN :

: tr F(z)2 : =
N∑

i,j=1

: Fi j(z)Fj i(z) :

=

N∑
i,j=1

(
Fi j(z)+ Fj i(z) + Fj i(z) Fi j(z)−

)
=
∑
p∈Z

Sp z−p−2.

The Sp are the Sugawara operators

Sp =

N∑
i,j=1

(∑
r<0

Fi j[r]Fj i[p− r] +
∑
r>0

Fj i[p− r] Fi j[r]
)

commuting with ôN .
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Type A

Apply the state-field correspondence map

Y : cdet
(
τ + E[−1]

)
7→ : cdet

(
∂z + E(z)

)
:

where Ei j(z) =
∑
r∈Z

Ei j[r] z−r−1 and

∂z + E(z) =



∂z + E11(z) E12(z) . . . E1 n(z)

E21(z) ∂z + E22(z) . . . E2 n(z)
...

...
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Expand the normally ordered column-determinant

: cdet(∂z + E(z)) : = ∂ n
z + S1(z) ∂ n−1

z + · · ·+ Sn−1(z) ∂z + Sn(z).

The coefficients Sl,r of the Sl(z) are Sugawara operators for ĝln.

Using the vacuum axiom

: cdet
(
∂z + E(z)

)
: 1 = cdet

(
∂z + E(z)+

)
,

we get explicit generators of z(ĝln) and hence, generators of the

commutative subalgebra of U(t−1gln[t−1]).
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Using the vacuum axiom

: cdet
(
∂z + E(z)

)
: 1 = cdet

(
∂z + E(z)+

)
,

we get explicit generators of z(ĝln) and hence, generators of the
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Types B, C and D

Apply the state-field correspondence map

Y : tr S(m)Φ1 . . .Φm 7→ : tr S(m)
(
∂z + F1(z)

)
. . .
(
∂z + Fm(z)

)
:

where Fi j(z) =
∑
r∈Z

Fi j[r] z−r−1 and

∂z + F(z) =



∂z F12(z) . . . F1N(z)

F21(z) ∂z . . . F2N(z)
...

...
. . .

...

FN 1(z) FN 2(z) . . . ∂z


.
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Expand into a polynomial in ∂z:

: tr S(m)
(
∂z + F1(z)

)
. . .
(
∂z + Fm(z)

)
:

= fm0(z) ∂m
z + fm 1(z) ∂m−1

z + · · ·+ fmm(z).

All coefficients of the fma(z) are Sugawara operators for ôN .

Applying them to the vacuum vector, we get explicit generators

of the Feigin–Frenkel center z(ôN), and hence, generators of

the commutative subalgebra of U(t−1oN [t−1]).
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the commutative subalgebra of U(t−1oN [t−1]).



Expand into a polynomial in ∂z:

: tr S(m)
(
∂z + F1(z)

)
. . .
(
∂z + Fm(z)

)
:

= fm0(z) ∂m
z + fm 1(z) ∂m−1

z + · · ·+ fmm(z).

All coefficients of the fma(z) are Sugawara operators for ôN .
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Introduce the matrix F(z)− = [Fij(z)−] and set L(z) = ∂z − F(z)−,

Fij(z)− =

∞∑
r=0

Fij[r]z−r−1.

Corollary. The coefficients of all series lma(z) with m = 1, 2, . . .

defined by the decompositions

tr S(m)L1(z) . . . Lm(z) = lm 0(z) ∂m
z + lm 1(z) ∂m−1

z + · · ·+ lmm(z),

generate a commutative subalgebra of U(oN [t]).
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Pfaffian-type Sugawara operators

In type D,

Y : Pf F[−1] 7→ Pf F(z)

(no normal ordering).

Taking the coefficients of the powers of z we get Sugawara

operators Sr, r ∈ Z , of the form

Sr =
∑

r1+···+rn=r

∑
σ

sgnσ · Fσ(1)σ(2)[r1] . . .Fσ(2n−1)σ(2n)[rn].
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Harmonic polynomials

The operator S(m) projects the vector space (CN)⊗m to a

subspace of the space of symmetric tensors, which carries an

irreducible representation of the orthogonal group ON .

Identify symmetric tensors with polynomials in variables

x1, . . . , xN . Then the subspace S(m)(CN)⊗m is isomorphic to the

space Hm
N of harmonic polynomials of degree m.

These are polynomials annihilated by the Laplace operator

∂2
1 + · · ·+ ∂2

N .
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The operator S(m) coincides with the restriction of the extremal

projector p : C [x1, . . . , xN ]→ HN to the subspace of

homogeneous polynomials of degree m, where

C [x1, . . . , xN ] = HN ⊕ (x2
1 + · · ·+ x2

N)C [x1, . . . , xN ].

Remark. The operator p is associated with the action of sl2

commuting with that of ON via the special case of Howe duality:

e 7→ −1
2

N∑
i=1

∂2
i , f 7→ 1

2

N∑
i=1

x2
i , h 7→ −N

2
−

N∑
i=1

xi ∂i,

and p satisfies e p = p f = 0.
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Corollary. The Segal–Sugawara vectors φmk can be found from

the expansion

tr pΦ(m)|Hm
N

= φm 0 τ
m + φm 1 τ

m−1 + · · ·+ φmm

with the trace taken over the subspace Hm
N ,

Φ(m) : xj1 . . . xjm 7→
∑

i16···6im

xi1 . . . xim ⊗ Φ i1,...,im
j1,...,jm

where

Φ i1,...,im
j1,...,jm =

1
α1! . . . αN ! m!

∑
σ,π∈Sm

Φiσ(1)jπ(1) . . .Φiσ(m)jπ(m)

and αi is the multiplicity of i in the multiset {i1, . . . , im}.
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