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Affine Kac—-Moody algebras
Let g be a simple Lie algebra over C.

Consider the standard invariant bilinear form on g

1
(X,Y) = o tr(adXadY),

where /" is the dual Coxeter number.
For the classical types,
n for g=sl,,

h =dN=2 for g = oy,

n+1 for g=sp,,.
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The affine Kac—Moody algebra g is the central extension
g=glt.r JeCK
with the commutation relations
(X[r], Y[s]] = [X,Y][r +s] 4+ ré, (X, Y)K,

where X[r] = Xt"forany X e gand r € Z.



The affine Kac—Moody algebra g is the central extension
g=glt.r JeCK
with the commutation relations
(X[, Y[s]] = (X, Y][r+ ] + 70, (X, V) K,
where X[r] = Xt" forany X e gand r € Z.

The vacuum module at the critical level V(g) over g is the
quotient of the universal enveloping algebra U(g) by the left

ideal generated by g[7] and K + h".
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Feigin—Frenkel center

The Feigin—Frenkel center 3(g) is the algebra

3(g) = Endg V(g).

Equivalently,

PN

5@ = V(9 = {ve V(g) | gldv = 0}.

The algebra 3(g) is commutative.
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As a vector space, the vacuum module V(g) can be identified

with the universal enveloping algebra U(r~'g[t~']).

Then the Feigin—Frenkel center 3(g) can be regarded as a

commutative subalgebra of U(r~'g[r~]).

Define the translation operator T': V(g) — V(g)
as the derivation 7' = —0,.

The subspace 3(g) of V(g) is T-invariant.

Any element of 3(g) is called a Segal-Sugawara vector.
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Theorem (Feigin—Frenkel, 1992).
There exist Segal-Sugawara vectors Sy,...,S, € U(t !g[t'])
such that

o~

3@) =C[TrS; | 1=1,...,n, k>0]

where n = rank g and the symbols S, ..., S, coincide with the
images of certain algebraically independent generators of the
algebra of invariants S(g)? under the embedding

S(g) — S(t~'g[t~!]) defined by X — X[—1].

We call Sy, ..., S, a complete set of Segal-Sugawara vectors.
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A detailed proof is explained in the book by

E. Frenkel, Langlands correspondence for loop groups, 2007.
Let P=P(Yy,...,Y;) bea g-invariantin S(g).

(2) =) _¥[r]z" andwrite

P(Y1(2), =Y Pzl

r<0

Theneach P, isa gl-invariantin S(r'g[r']).

Moreover, k!P_;_yy=T*P(Yi[-1],...,Y[—1]) fork >0
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Theorem (Beilinson—Drinfeld, 1997). If Py, ..., P, are
algebraically independent generators of S(g)?, then the
elements Py (,, ..., P, ) With r < 0 are algebraically

independent generators of S(t_lg[t_l])gm.

Earlier work: R. Goodman and N. Wallach, 1989, type A;
T. Hayashi, 1988, types A, B, C; V. Kac and D. Kazhdan, 1979.



Explicit formulas for Segal-Sugawara vectors



Explicit formulas for Segal-Sugawara vectors

They will lead, in particular, to a simpler proof of the

Feigin—Frenkel theorem for classical types.



Explicit formulas for Segal-Sugawara vectors

They will lead, in particular, to a simpler proof of the

Feigin—Frenkel theorem for classical types.

We will need the extended Lie algebra g @& Cr, where for the

element 7 = —0, we have the relations

(7, X[r]] = —rX[r—1], [7,K] =0.
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Type A

Lie algebra g = gl,,, the standard basis {E;; | i,j = 1,...,n}.

Consider the n x n matrix 7 + E[—1] given by

T+ E[-1] =

T+E11[—1]

Er[—1]

Ep[—1]

T +E22[—1]




Theorem (Chervov—Talalaev, 2006; also Chervov—M., 2009).

The coefficients Sy, ..., S, of the polynomial
cdet(T + E[—l]) =+ ST S, T+ S,
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Theorem (Chervov—Talalaev, 2006; also Chervov—M., 2009).
The coefficients Sy, . .., S, of the polynomial

cdet(r + E[-1]) = 7" + St 4 S T+ S,
form a complete set of Segal-Sugawara vectors in V(gl,,).
Example. Forn =2
cdet(r + E[—1]) = (7 + Eni[—1]) (T + Ex[—1]) — Exi[-1]Ep[—1]

=248 T+,

with

St = En[—1] 4+ Ex[-1],

S, =Eq; [—1] Ezz[—l] — Ey [—1] Elz[—l] + Ezz[—Z].



Corollary. For any k > 0 all coefficients Py, in the expansion
tr(7‘—|—E[—1])k = Pk()Tk + Py k=1 + -+ Pk

are Segal-Sugawara vectors in V(gl,,).



Corollary. For any k > 0 all coefficients Py, in the expansion
te(7 + E[—1]))f = Po 7" + Py 771 -+ Py
are Segal-Sugawara vectors in V(gl,,).

Moreover, the elements Py, ..., P,, form a complete set of

Segal-Sugawara vectors.



Corollary. For any k > 0 all coefficients Py, in the expansion
te(7 + E[—1]))f = Po 7" + Py 771 -+ Py
are Segal-Sugawara vectors in V(gl,,).

Moreover, the elements Py, ..., P,, form a complete set of

Segal-Sugawara vectors.

Remark. These results generalize to the Lie superalgebra gl

min*
The column-determinant is replaced by a noncommutative

Berezinian (M.—Ragoucy, 2009).
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Types B, C and D

The orthogonal Lie algebra oy of skew-symmetric matrices is

the subalgebra of gl spanned by the elements F;; = E;; — Ej;.

Denote by F the N x N matrix whose (i, ) entry is F;. Regard F
as the element
N
F=Y e;®F;€cEndC" @ U(oy).
ij=1
Introduce elements of End C ® End C" = End (CY ® CV) by

N N
P:Zei]’®€ji, Q:Z"ij@)eij'

ij=1 ij=1



The defining relations of the algebra U(oy) have the form

FiFo —F,Fi=({P—-Q)F, —F,(P—0Q)

together with the relation F + F' = 0,



The defining relations of the algebra U(oy) have the form
FiF,—FFi=(P—-Q)F, - F,(P-Q)

together with the relation F + F' = 0, where both sides are
regarded as elements of the algebra End CY¥ ® End C" @ U(oy)

and

N N
F1:Zeij®1®F,'j, F2:ZI®€U®FU-

ij=1 ij=1
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In the affine Kac—-Moody algebra oy = oy [t,7~'] ® CK set
F[r] = F;1" for any r € Z. Introduce the matrix F[r] = [Fj[r]]
and regard it as the element

N
Flrl =" e;® Fylr] € EndCY @ U(oy).
ij=1

The defining relations of the algebra U(oy) can be written as

Flr] F[s]a — F[s|2 F[r]i = (P — Q) F[r + s|o — Flr + s|2 (P — Q)

+ 76, _(P—Q)K.
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Consider the N x N matrix ® = 7 + F[—1],

Fin[—1]
Fan[—1]




Consider the N x N matrix ® = 7 + F[—1],

Note that

Fyjl=1] + Fji[~1] = 0.
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Foreach a € {1,...,m} define the element ®, of the algebra

EndC" ®...® EndC" @ U(oy & Cr)

m

by

N
(Pa — Z 1®(a—1) ® eij ® 1®(m—a) ® (bij;
ij=1

where & = 6,7 + Fij[—1].



Foreach a € {1,...,m} define the element ®, of the algebra

EndC" ®...® EndC" @ U(oy & Cr)

m

by
N
0= 190V @e; @190 @ @y,

ij=1

where & = 6,7 + Fij[—1].

The trace map tr: EndC"Y — C is defined by tr: ¢; — 8-



Introduce the element S(™ of the algebra

EndCY @ ... @ EndCV

m




Introduce the element S(™ of the algebra

EndCY @ ... @ EndCV

m

by

(m) _ L Pab - Qab
S - om! H (1+b—a N/2—|—b—a—1)’

1<a<b<m

the product is taken in the lexicographic order on the pairs
(a,b), and P,, and Q, act as the respective operators P and Q
in the a-th and b-th copies of C" and as the identity operators in

all the remaining copies.



Properties: for 1 <a < b <m we have

Py S™ =8 Py, =8 and  Qp S™ = 8™ 0y = 0.



Properties: for 1 <a < b <m we have
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Properties: for 1 <a < b <m we have
Py S™ =8Py =5 and Qg S™ =5 0y = 0.

Equivalent formula:

= I (- gra—s) I ()

" 1<a<b<m I1<a<b<m

Remark. S is the idempotent associated with the trivial
representation of the Brauer algebra B,,(N). In particular,

(S(M))Z — §(m)



In a reduced form,
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In a reduced form,

m/2] -1
m m —1)"(N/2+m—2
som = gom 5~ D ( / > S Quri -+ Qari

27l r
r=0 a;<bj

where H(") is the symmetrizer in the group algebra C[S,,].

In terms of the Jucys—Murphy elements:

m b—

1
o T7 - _
S _bl_[zb(N+2b—4)(1+al(P“h Q“b))

b—1

X <N+b—3+Z(Pab—Qab)).

a=1
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Theorem. The elements ¢,,, € U(t~'oy[t~!]) defined by
S| .. Dy =0T+ Gy T+ D

are Segal-Sugawara vectors for oy.

Moreover, ¢,,, b44,---,Ps,0, 1S acomplete set of

Segal-Sugawara vectors for 05,1,

a0y Pass - Pon_2on_n, Oy IS @ complete set of

Segal-Sugawara vectors for 0,,, where ¢, = PfF[—1] is the

Pfaffian of the skew-symmetric matrix F[—1].
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Example. For m = 2 we have

Note the relations try P = 1 and tr; Q = 1.

Hence, ¢,, is found from
2) 2,1 2
wrSP® P, = —(tr (1 + F[—1])) —|—§tr(7'+F[—1])

Z| =l =

tr (7 — F[—1])(7 + F[-1])



Example. For m = 2 we have

Note the relations try P = 1 and tr; Q = 1.
Hence, ¢,, is found from

1 1
5 (tr (r + FI=10)" + Sur (7 + F[=1])?
N %tr (r — F[-1])(r + F[-1))

tI‘S(Z)@l(I)z =

= Nzi;:,z((zv2 = N) 7+ e F[- 1))
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In the case of 0,, the Pfaffian Pf F[—1] is

PEF[—1] = sgno - Fo)yo@)=11. - Foguo1)on -1,

summed over the permutations o € &,, such that
o(l)y<o(2), oc3)<o4), ..., o2n—1)<o(2n) and
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In the case of 0,, the Pfaffian Pf F[—1] is

PEF[—1] = sgno - Fo)yo@)=11. - Foguo1)on -1,

summed over the permutations o € &,, such that
o(l)y<o(2), oc3)<o4), ..., o2n—1)<o(2n) and

o(l)<oB)<---<o(2n—1).
Example. For o4 we have

PfF[—1] = F1a2[—1] F34[—1] — F13[—1] Fo4][—1] + F14[—1] F23][—1].



For the proof of the theorem we show that

F0orS™®, ..., =0 and  F[l]orS™d,...d, =0



For the proof of the theorem we show that

F0orS™®, ... ®,=0 and  F[l]orS™d, ...

in the module

EndC" @ ... @ EndC" @V (oy)[7]
m+1

with the copies of End C" labelled by 0,1, ..., m.
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Suppose that the eigenvalues of X are

XlyooosXn, —X1yeo.,—Xp, 0 if N=2n+1,

Xlyenny Xy, —X1y...,—X, if N=2n.



For the symbols of the Segal-Sugawara vectors ¢,,,, find
trS(Zk)Xl . Xop, X € opn.

Suppose that the eigenvalues of X are

XlyooosXn, —X1yeo.,—Xp, 0 if N=2n+1,
Xlyenny Xy, —X1y...,—X, if N=2n.
Then
r SCRX, . Xy = m HE

hy is the complete symmetric polynomial.
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the translation operator T = —0;,
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Vertex algebra structure

The vacuum module V(g) is a vertex algebra with
the vacuum vector 1,
the translation operator T = —0;,

and the state-field correspondence Y which is a linear map
Y : V(g) — End V(g)[[z.z"']].

It is determined by

ZX —r—1 _. ()

rez



For any r; > 0 we have

Y(Xi[—r1 — 1] ... Xp[—1m — 1], 2)

1 r m .
— PR 0" X1(z) ... 0" X (2)

with the convention that the normally ordered product is read

from right to left;



For any r; > 0 we have

Y(Xi[—r1 — 1] ... Xp[—1m — 1], 2)

1 r m .
— PR 0" X1(z) ... 0" X (2)

with the convention that the normally ordered product is read

from right to left;

 a(2)b(w) : = a(z) 1 b(w) + b(w)a(z)_,



For any r; > 0 we have

Y(Xi[—r1 — 1] ... Xp[—1m — 1], 2)

1 r m .
— PR 0" X1(z) ... 0" X (2)

with the convention that the normally ordered product is read

from right to left;

where



Suppose that Sy, ..., S, is a complete set of Segal-Sugawara
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Suppose that Sy,..., S, is a complete set of Segal-Sugawara

vectors in 3(g). Apply the state-field correspondence map:

Sl, ZSer r—l.

rez

The elements S, are Sugawara operators for g. They generate

the center of the completed algebra U(g) at the critical level.

Applications: Singular vectors in Verma modules and Weyl

modules over g (E. Frenkel and D. Gaitsgory, 2006, 2007).
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Example.

Apply Y to the Segal-Sugawara vector tr F[—1]> for oy:

Il
(1=
5
<
&
:“rj
D

trF(z)?



Example.

Apply Y to the Segal-Sugawara vector tr F[—1]> for oy:

I
:MZ

trF(z)? :Fij(2) Fju(z)

<
I
—

I
:MZ

(Fij(Z)Jr Fji(Z) + Fji(Z) Fij(Z)f) — ZSP Z—p—z'

DEZL

<
Il
-

The S, are the Sugawara operators

= S (S Pl — 1+ Bl i)

ij=1 r<0 r=0

commuting with oy.
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Type A

Apply the state-field correspondence map
Y :cdet(r + E[—1]) +— :cdet(d; + E(z)) :

where Ej(z)=> Ej[r]z"" and

reZ
_82 +En(z)  En2(z) ... En(2)
Exi(z) 0.+ Exn(z) ... Ez,(2)

0, + E(Z) =

Enl(z) EnQ(Z) 8z+Enn(Z>
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Expand the normally ordered column-determinant
cedet(d, +E(2) : = 0"+ S1(2) 07 4+ 80-1(2) O: + Sa(2).
The coefficients S; . of the S;(z) are Sugawara operators for 5[,,.
Using the vacuum axiom
cedet(0, + E(z)) : 1 = cdet(0, + E(z)4),

we get explicit generators of 3(gA[n) and hence, generators of the

commutative subalgebra of U(t~!gl,[t']).
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Types B, C and D

Apply the state-field correspondence map

Y:tuS™e, . D, — :trS(m)(8Z+F1(z))...(8Z+Fm(z)):



Types B, C and D
Apply the state-field correspondence map
Y:tuS"e, D, — st (0:+ F1(2)) ... (0. + Fu(2)) :

where Fj(z) = > FylrJz~"~" and
rez



Types B, C and D
Apply the state-field correspondence map
Y:tuS"e, D, — st (0:+ F1(2)) ... (0. + Fu(2)) :

where Fj(z) = > FylrJz~"~" and
rez

az“‘F(Z):




Expand into a polynomial in 0.:
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e S (0, + F1(2)) ... (0, + Fu(2)) :
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All coefficients of the f;,,(z) are Sugawara operators for oy.



Expand into a polynomial in 0.:

eS8, + F1(2)) - (0 + Fu(2)) -

= me(Z) azm +fm1(z) 8Zm71 + - +ﬁnm(z)-

All coefficients of the f;,,(z) are Sugawara operators for oy.

Applying them to the vacuum vector, we get explicit generators
of the Feigin—Frenkel center 3(oy), and hence, generators of

the commutative subalgebra of U(r'oy[t~1]).
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Introduce the matrix F(z)- = [F;(z)-] and set L(z) = 9, — F(z)—,

Fy) = S Ryl
r=0

Corollary. The coefficients of all series 1,,,(z) withm = 1,2, ...

defined by the decompositions
SMLI) - Ln() = bnol@) &+ b ()01 4 -+ by (2),

generate a commutative subalgebra of U(oy|t]).
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Pfaffian-type Sugawara operators
In type D,
Y :PfF[—1] — PfF(z)

(no normal ordering).

Taking the coefficients of the powers of z we get Sugawara

operators S,, r € Z, of the form

Sr=" Y. > _sgno Fouye@lri] .- Fopuot)omral

ritetm=r o
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Harmonic polynomials

The operator S projects the vector space (CY)®" to a
subspace of the space of symmetric tensors, which carries an

irreducible representation of the orthogonal group Oy.

Identify symmetric tensors with polynomials in variables
x1,...,xy. Then the subspace $) (CN)®" is isomorphic to the

space #}; of harmonic polynomials of degree m.

These are polynomials annihilated by the Laplace operator

O+ + 0%
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The operator S coincides with the restriction of the extremal
projector p:Clxy,...,xy] = Hy to the subspace of

homogeneous polynomials of degree m, where

Clxt,y ..., xn] =Hy ® (&3 + -+ + %) Clxy, . . ., ).

Remark. The operator p is associated with the action of sl

commuting with that of Oy via the special case of Howe duality:

1 N 1 N N N
EH*E Zlalz, f}—)zzl:xlz, hHZ.lel'ah
= = 1=

and p satisfies ep=pf=0.
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Corollary. The Segal-Sugawara vectors ¢,,, can be found from

the expansion
trp‘l)(m)|7_[;\7 = ¢m0 ™+ ¢m1 Tm_l +eet ¢mm
with the trace taken over the subspace H}/,

m) . . . ) . l'l,.‘.,l.m
3! DXjy e X, g Xiy oo X, @ @

yeeedm
i1<"'<i171
where
B it _ ! S @, o
Jlyeeedm | | 199) lo()Jm(1) ** "~ lo(m)]w(m)
1 N o, mEG

and «; is the multiplicity of i in the multiset {iy, ..., i}



