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Vertex algebras

A vertex algebra V is a vector space with the additional data

(Y , T , 1), where the state-field correspondence Y is a map

Y : V → End V [[z, z−1]],

1 is a vacuum vector 1 ∈ V ,

and the infinitesimal translation T is an operator

T : V → V .
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These data must satisfy certain axioms. For a ∈ V we write

Y (a, z) =
∑
n∈Z

a(n)z−n−1, a(n) ∈ End V ,

the elements a(n) are called the Fourier coefficients of a.

Each formal series Y (a, z) ∈ End V [[z, z−1]] must be a field:

for any b ∈ V we must have a(n) b = 0 for n � 0.
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I Translation covariance: [T , Y (a, z)] = ∂zY (a, z).

I Vacuum axioms: T 1 = 0,

Y (a, z)1 is a power series in z and

Y (a, z)1|z=0 = a, Y (1, z) = id.

I Locality: for all a, b ∈ V ,

(z−w)NY (a, z)Y (b, w) = (z−w)NY (b, w)Y (a, z), N � 0.

Remarks. T is determined by Y : T a = a(−2) 1.

Moreover, Y (T a, z) = ∂zY (a, z).
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Example. Let V be a commutative associative algebra with 1

and let T : V → V be a derivation.

Then V is a vertex algebra with the vacuum vector 1, the

infinitesimal translation T and

Y (a, z) is the operator of multiplication by ezT a.

V is a commutative vertex algebra.

A general vertex algebra can be viewed as a vector space with

the multiplication depending on z:

azb = Y (a, z)b.
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The span in End V of all Fourier coefficients a(n) of all vertex

operators Y (a, z) is a Lie subalgebra of End V .

The commutator of Fourier coefficients is given by

the Borcherds identity:

[a(m), b(k)] =
∑
n>0

(
m
n

)(
a(n) b

)
(m+k−n)

.

I Hence, if a(n) b = 0 for all a ∈ V and n > 0, then all Fourier

coefficients b(n) belong to the center of this Lie subalgebra.
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Center of a vertex algebra

The center Z(V ) of a vertex algebra V is the subspace of V

defined by

Z(V ) = {b ∈ V | a(n) b = 0 for all a ∈ V and n > 0}.

I Z(V ) is T -invariant.

I Z(V ) is a commutative associative algebra with

a b := a(−1) b, a, b ∈ Z(V ).

I The vacuum vector 1 is a unit, T is a derivation.
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Vertex algebra associated with ĝln

The affine Kac–Moody algebra ĝln = gln[t , t−1]⊕ CK has the

commutation relations

[
eij [r ], ekl [s ]

]
= δkj ei l [r+s ]−δi l ekj [r+s ]+K

(
δkj δi l−

δij δkl

n

)
r δr ,−s,

and the element K is central.

In particular, for any r the element e11[r ] + · · ·+ enn[r ]

belongs to the center of ĝln.
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Let κ ∈ C .

Introduce the vector space Vκ(gln) as the quotient of

the universal enveloping algebra U(ĝln) by

the left ideal generated by gln[t ] and K − κ:

Vκ(gln) = U(ĝln)/U(ĝln)
(
gln[t ] + C(K − κ)

)
.

We view Vκ(gln) as a ĝln-module. It is called

the vacuum representation of level κ.
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As a vector space, Vκ(gln) will be identified with U(t−1gln[t−1]).

I Vκ(gln) is a vertex algebra.

The vacuum vector is 1,

T : 1 7→ 0,
[
T , eij [r ]

]
= −r eij [r − 1].

The state-field correspondence Y is defined as follows. First,

Y (eij [−1], z) =
∑
m∈Z

eij [m]z−m−1 =: eij(z).
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Furthermore, for any r > 0 we get

Y (eij [−r − 1], z) =
1
r !

Y (T r eij [−1], z) =
1
r !

∂r
z eij(z).

In order to define Y (ei1j1 [−r1 − 1] . . . eim jm [−rm − 1], z),

we need to use normal ordering.
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Example. We have

Y (eij [−1] ekl [−1], z) =: eij(z) ekl(z) :

=
∑
s∈Z

( ∑
r<0

eij [r ] ekl [s] z−r−s−2 +
∑
r>0

ekl [s] eij [r ] z−r−s−2
)
.

Hence, for the Fourier coefficients we have

(
eij [−1] ekl [−1]

)
(m)

=
∑
r<0

eij [r ] ekl [m−r−1]+
∑
r>0

ekl [m−r−1] eij [r ].

The local completion of the universal enveloping algebra

U(ĝln) at the level κ is the Lie algebra Uκ(ĝln)loc spanned by the

Fourier coefficients of the fields Y (a, z) with a ∈ Vκ(gln).
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U(ĝln) at the level κ is the Lie algebra Uκ(ĝln)loc spanned by the
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The center of Vκ(gln)

By a Segal–Sugawara vector S we will mean any element of

the center of the vertex algebra Vκ(gln), that is, any element

S ∈ Vκ(gln) satisfying gln [t ] S = 0.

If κ 6= −n, then the center of Vκ(gln) is trivial, i.e., coincides with

the algebra of polynomials in

e11[−1] + · · ·+ enn[−1], e11[−2] + · · ·+ enn[−2], . . . .

Remark. n = h∨ is the dual Coxeter number for sln.
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From now on suppose κ = −n, the critical level.

Example.

The quadratic element

S =
n∑

i,j=1

eij [−1]eji [−1]

is the classical Segal–Sugawara vector.

Remark. If κ 6= −n then the Fourier coefficients of the field

1
2(κ + n)

Y (S, z)

generate an action of the Virasoro algebra on Vκ(sln)

(the Sugawara construction).
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Set

z(ĝln) = the center of the vertex algebra V−n(gln).

This is a T -invariant commutative subalgebra of U(t−1gln[t−1]).

For any element S ∈ U(t−1gln[t−1]) denote by S its highest

degree component with respect to the natural filtration in the

universal enveloping algebra.
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Segal–Sugawara vectors

S1, . . . , Sn ∈ U(t−1gln[t
−1])

form a complete set of Segal–Sugawara vectors, if the highest

degree components S1, . . . , Sn coincide with the images of

certain algebraically independent generators of the algebra of

invariants S(gln)
gln under the embedding

S(gln) ↪→ S(t−1gln[t−1]) defined by eij 7→ eij [−1].



Theorem (T. Hayashi ’88, R. Goodman & N. Wallach ’89,

B. Feigin & E. Frenkel ’92).

There exists a complete set S1, . . . , Sn of Segal–Sugawara

vectors and

z(ĝln) = C [T r Sl | l = 1, . . . , n, r > 0].
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Explicit formulas for Segal–Sugawara vectors

We will need the extended Lie algebra ĝln ⊕ Cτ , where for the

element τ we have the relations

[
τ, eij [r ]

]
= −r eij [r − 1],

[
τ, K

]
= 0.

Note that T a = [τ, a] for any a ∈ V−n(gln).
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[
τ, eij [r ]

]
= −r eij [r − 1],

[
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= 0.

Note that T a = [τ, a] for any a ∈ V−n(gln).



For an arbitrary n × n matrix A = [aij ] with entries in a ring we

define its column-determinant cdet A by the formula

cdet A =
∑

σ

sgn σ · aσ(1)1 . . . aσ(n)n,

summed over all permutations σ of the set {1, . . . , n}.



Consider the n × n matrix τ + E [−1] given by

τ + E [−1] =



τ + e11[−1] e12[−1] . . . e1n[−1]

e21[−1] τ + e22[−1] . . . e2n[−1]

...
...

. . .
...

en1[−1] en2[−1] . . . τ + enn[−1]


.



Theorem (A. Chervov & A. M. ’09).

The coefficients S1, . . . , Sn of the polynomial

cdet
(
τ + E [−1]

)
= τn + S1 τn−1 + · · ·+ Sn−1 τ + Sn

form a complete set of Segal–Sugawara vectors in V−n(gln).

Hence, z(ĝln) is the algebra of polynomials,

z(ĝln) = C [T r Sl | l = 1, . . . , n; r > 0 ].
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Examples.

If n = 2 then

cdet
(
τ + E [−1]

)
=

(
τ + e11[−1]

)(
τ + e22[−1]

)
− e21[−1]e12[−1]

= τ2 + S1 τ + S2

with

S1 = e11[−1] + e22[−1],

S2 = e11[−1] e22[−1]− e21[−1] e12[−1] + e22[−2].
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Regarding the Lie algebra sln as the quotient of gln by the

relation e11 + · · ·+ enn = 0, we obtain the respective complete

set of Segal–Sugawara vectors in V−n(sln). In particular, the

vector S1 vanishes, while S2 coincides with the canonical

quadratic element, up to a constant factor.



Proof. A matrix A = [aij ] over a ring is a Manin matrix if

aij akl − akl aij = akj ail − ail akj for all possible i , j , k , l .

Lemma. The matrix τ + E [−1] with entries in

the algebra U(t−1gln[t−1]⊕ Cτ) is a Manin matrix.

Check that for all i , j

eij [0] cdet
(
τ + E [−1]

)
= 0 and

enn[1] cdet
(
τ + E [−1]

)
= 0

in the ĝln-module V−n(gln)⊗ C [τ ].
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Corollary. For any k > 0 all coefficients Pkl in the expansion

tr(τ + E [−1])k = Pk 0 τ k + Pk1 τ k−1 + · · ·+ Pkk

are Segal–Sugawara vectors in V−n(gln).

Moreover, the elements P11, . . . , Pnn form a complete set of

Segal–Sugawara vectors.

Hence, z(ĝln) is the algebra of polynomials,

z(ĝln) = C [T r Pl l | l = 1, . . . , n; r > 0 ].
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Hence, z(ĝln) is the algebra of polynomials,
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Proof is based on the Newton formula

(A. Chervov & G. Falqui, ’08):

cdet(u + τ + E [−1])−1 · ∂u cdet(u + τ + E [−1])

=
∞∑

k=0

(−1)k u−k−1 tr(τ + E [−1])k .

Examples. We have

P10 = n, P11 = trE [−1]

P20 = n, P21 = 2 trE [−1], P22 = trE [−1]2 + trE [−2],

P30 = n, P31 = 3 trE [−1], P32 = 3 trE [−1]2 + 3 trE [−2],

P33 = trE [−1]3 + 2 trE [−1]E [−2] + trE [−2]E [−1] + 2 trE [−3].
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Center of the local completion

Recall that in the vertex algebra V−n(gln) we have

eij(z) = Y (eij [−1], z) with

eij(z) =
∑
r∈Z

eij [r ] z−r−1, i , j = 1, . . . , n.

Recall also that the local completion of U(ĝln) at the critical

level κ = −n is the Lie algebra U−n(ĝln)loc spanned by the

Fourier coefficients of the fields Y (a, z) with a ∈ V−n(gln).
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level κ = −n is the Lie algebra U−n(ĝln)loc spanned by the
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Introduce the n × n matrix ∂z + E(z) by

∂z + E(z) =



∂z + e11(z) e12(z) . . . e1n(z)

e21(z) ∂z + e22(z) . . . e2n(z)

...
...

. . .
...

en1(z) en2(z) . . . ∂z + enn(z)


.



Expand the normally ordered column-determinant

: cdet(∂z +E(z)) : = ∂ n
z +S1(z) ∂ n−1

z + · · ·+Sn−1(z) ∂z +Sn(z).

Equivalently, the fields Sl(z) are given by Sl(z) = Y (Sl , z).

Example. For n = 2 we have

S1(z) = e11(z) + e22(z),

S2(z) = : e11(z) e22(z) : − : e21(z) e12(z) : + e ′22(z).

The fields Pkl(z) = Y (Pkl , z) corresponding to the

Segal–Sugawara vectors Pkl are given by

: tr
(
∂z + E(z)

)k
: = Pk 0(z) ∂ k

z + Pk1(z) ∂ k−1
z + · · ·+ Pkk (z).
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The center of the local completion U−n(ĝln)loc at the critical

level is the vector subspace Z(ĝln) which consists of the

elements commuting with ĝln.

Corollary. The center Z(ĝln) of the local completion U−n(ĝln)loc

consists of the Fourier coefficients of all differential polynomials

in either family of the fields S1(z), . . . , Sn(z) or

P11(z), . . . , Pnn(z).



The center of the local completion U−n(ĝln)loc at the critical
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Sugawara operators in Verma modules

Let λ = (λ1, . . . , λn) with λi ∈ C . The Verma module M(λ) of

the critical level over ĝln is the universal module generated by a

nonzero vector ξ (the highest vector) satisfying the conditions

eii [0] ξ = λi ξ for i = 1, . . . , n,

eij [0] ξ = 0 for i < j ,

eij [r ] ξ = 0 for all i , j and r > 1,

K ξ = −n ξ.
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A singular vector of the Verma module is any nonzero vector

η ∈ M(λ) satisfying the conditions

eij [0] η = 0 for i < j ,

eij [r ] η = 0 for all i , j and r > 1.

Write

Sl(z) =
∑
r∈Z

Sl,(r)z−r−1.

If η is a singular vector, then so is Sl,(r)η for any l = 1, . . . , n

and r 6 l − 2.
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Corollary. If λi − λj + j − i /∈ {0, 1, . . . } for all i < j , then the

space of singular vectors of M(λ) is

C [Sl,(l−2), Sl,(l−3), . . . | l = 1, . . . , n] ξ.

Example. For n = 2 we have S1,(r) = e11[r ] + e22[r ] and

S2,(r) =
∞∑

s<0

(
e11[s]e22[r − s − 1]− e21[s]e12[r − s − 1]

)
+

∞∑
s>0

(
e22[r − s − 1]e11[s]− e12[r − s − 1]e21[s]

)
− r e22[r − 1].



Corollary. If λi − λj + j − i /∈ {0, 1, . . . } for all i < j , then the

space of singular vectors of M(λ) is

C [Sl,(l−2), Sl,(l−3), . . . | l = 1, . . . , n] ξ.

Example. For n = 2 we have S1,(r) = e11[r ] + e22[r ]

and

S2,(r) =
∞∑

s<0

(
e11[s]e22[r − s − 1]− e21[s]e12[r − s − 1]

)
+

∞∑
s>0

(
e22[r − s − 1]e11[s]− e12[r − s − 1]e21[s]

)
− r e22[r − 1].



Corollary. If λi − λj + j − i /∈ {0, 1, . . . } for all i < j , then the

space of singular vectors of M(λ) is

C [Sl,(l−2), Sl,(l−3), . . . | l = 1, . . . , n] ξ.

Example. For n = 2 we have S1,(r) = e11[r ] + e22[r ] and

S2,(r) =
∞∑

s<0

(
e11[s]e22[r − s − 1]− e21[s]e12[r − s − 1]

)
+

∞∑
s>0

(
e22[r − s − 1]e11[s]− e12[r − s − 1]e21[s]

)
− r e22[r − 1].



Commutative subalgebras in U
(
t−1gln[t−1]

)

By the vacuum axiom of a vertex algebra, the application of the

fields Sl(z) and Pkl(z) to the vacuum vector 1 of V−n(gln) yields

power series in z which we denote respectively by

Sl(z)+ =
∑
r<0

S+
l,(r)z

−r−1 and Pkl(z)+ =
∑
r<0

P+
kl,(r)z

−r−1.

More explicitly, set

eij(z)+ =
∑
r<0

eij [r ] z−r−1, i , j = 1, . . . , n.
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Sl(z)+ =
∑
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S+
l,(r)z

−r−1 and Pkl(z)+ =
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r<0

P+
kl,(r)z
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= Pk 0(z)+ ∂ k

z + Pk1(z)+ ∂ k−1
z + · · ·+ Pkk (z)+.
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Corollary. The elements of each of the families

S+
l,(r) with l = 1, . . . , n and r < 0,

P+
k l,(r) with 0 6 l 6 k and r < 0,

belong to z(ĝln). In particular, they commute pairwise.

Moreover, z(ĝln) is the algebra of polynomials

z(ĝln) = C [S+
l,(r) | l = 1, . . . , n, r < 0]

= C [P+
l l,(r) | l = 1, . . . , n; r < 0 ].
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Remarks. The first family of commuting elements in

U(t−1gln[t−1]) was originally discovered by D. Talalaev ’06 in a

slightly different form.

The results were extended by A. Chervov and D. Talalaev ’06 to

get central elements in the local completion U−n(ĝln)loc.

The fact that the elements S+
l,(r) and the elements T r Sl

generate the same commutative subalgebra of U(t−1gln[t−1])

was established by L. Rybnikov ’08. Each of them coincides

with the centralizer of the element S2.

The second subalgebra was constructed earlier

by B. Feigin, E. Frenkel and N. Reshetikhin, ’94.
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Classical W-algebra for gln

Let π0 denote the algebra of polynomials

π0 = C [bi [r ] | i = 1, . . . , n; r < 0 ]

in the variables bi [r ], which we consider as a (commutative)

vertex algebra.

The translation operator on π0 is defined by

T 1 = 0,
[
T , bi [r ]

]
= −r bi [r − 1].
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vertex algebra.

The translation operator on π0 is defined by

T 1 = 0,
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T , bi [r ]
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= −r bi [r − 1].



Introduce the operators

Qi : π0 → π0, i = 1, . . . , n − 1,

by

Qi =
∞∑

r=0

∑
λ` r

bi(λ)

zλ

( ∂

∂bi [−r − 1]
− ∂

∂bi+1[−r − 1]

)
.

Here,

bi(λ) =
(
bi [−λ1]− bi+1[−λ1]

)
. . .

(
bi [−λp]− bi+1[−λp]

)
,

zλ = 1m1m1! 2m2m2! . . . rmr mr !,

where mk is the multiplicity of k in λ.
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The first few terms:

Qi =
∂

∂bi [−1]
− ∂

∂bi+1[−1]

+
(

bi [−1]− bi+1[−1]
)( ∂

∂bi [−2]
− ∂

∂bi+1[−2]

)

+
bi [−2]− bi+1[−2] +

(
bi [−1]− bi+1[−1]

)2

2

×
( ∂

∂bi [−3]
− ∂

∂bi+1[−3]

)
+ . . .



The classical W-algebra W(gln) consists of the elements of π0,

annihilated by all operators Qi ,

W(gln) =
⋂

16 i 6n−1

Ker Qi .

Example. The following are elements of W(gl3):

B1 = b1[−1] + b2[−1] + b3[−1],

B2 = b1[−1] b2[−1] + b1[−1] b3[−1] + b2[−1] b3[−1]

+ 2 b1[−2] + b2[−2],

B3 = b1[−1] b2[−1] b3[−1] + b1[−2] b2[−1]

+ b1[−2] b3[−1] + b1[−1] b2[−2] + 2 b1[−3].
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The Weyl algebra A(gln) is generated by the elements aij [r ]

with r ∈ Z , i , j = 1, . . . , n and i 6= j and the defining relations

[
aij [r ], akl [s]

]
= δkj δi l δr ,−s for i < j ;

all other pairs of the generators commute.

The Fock representation M(gln) of A(gln) is generated by a

vector |0〉 such that for i < j we have

aij [r ]|0〉 = 0, r > 0 and aji [r ]|0〉 = 0, r > 0.
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Example. For n = 2 the Weyl algebra A(gl2) is generated by

the elements a12[r ] and a21[r ] with r ∈ Z .

The defining relations are
[
a12[r ], a21[s]

]
= δr ,−s.

The Fock representation M(gl2) is generated by a vector |0〉

such that

a12[r ]|0〉 = 0, r > 0 and a21[r ]|0〉 = 0, r > 0.

The elements of M(gl2) are polynomials in the a12[r ] with r < 0

and a21[r ] with r 6 0 applied to |0〉.
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The vector space M(gln) carries a vertex algebra structure. In

particular, |0〉 is the vacuum vector, and for i < j we have

Y (aij [−1] |0〉, z) =
∑
r∈Z

aij [r ]z−r−1 =: aij(z)

Y (aji [0] |0〉, z) =
∑
r∈Z

aji [r ]z−r =: aji(z).

Key fact (M. Wakimoto ’86, B. Feigin & E. Frenkel ’88).

There exists a vertex algebra homomorphism

ρ : V−n(gln) → M(gln)⊗ π0.
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Example. For n = 2 the explicit formulas are

e12(z) 7→ a12(z)

e11(z) 7→ − : a21(z)a12(z) : + b1(z)

e22(z) 7→ : a21(z)a12(z) : + b2(z)

e21(z) 7→ − : a21(z)2 a12(z) : − 2 ∂z a21(z)

+ a21(z)
(
b1(z)− b2(z)

)
,

where

bi(z) =
∑
r<0

bi [r ] z−r−1.



The image of the center z(ĝln) of the vertex algebra V−n(gln)

under the homomorphism ρ is contained in π0
∼= 1⊗ π0.

This image coincides with the classical W-algebra W(gln).

Corollary.

ρ : cdet(τ + E [−1]) 7→
(
τ + bn[−1]

)
· · ·

(
τ + b1[−1]

)
,

where
[
τ, bi [r ]

]
= −r bi [r − 1].

Hence, W(gln) = C [T r Bi | i = 1, . . . , n, r > 0], where

(
τ + bn[−1]

)
· · ·

(
τ + b1[−1]

)
= τn + B1 τn−1 + · · ·+ Bn.
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Corollary.

ρ :
∞∑

k=0

tk tr(τ + E [−1])k

7→
n∑

i=1

(
1− t

(
τ + b1[−1]

))−1
· · ·

(
1− t

(
τ + bi [−1]

))−1

×
(

1− t
(
τ + bi−1[−1]

))
· · ·

(
1− t

(
τ + b1[−1]

))
,

where t is a complex variable.



Eigenvalues in the Wakimoto modules

Take an n-tuple

χ(t) =
(
χ1(t), . . . , χn(t)

)
, χi(t) =

∑
r∈Z

χi [r ] t−r−1 ∈ C((t)).

A ĝln-module structure on the vector space M(gln) can be

obtained by replacing the bi(z) by χi(z) in the formulas for the

homomorphism ρ.

We obtain the Wakimoto modules of critical level Wχ(t).
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Wakimoto modules Wχ(t) as multiplications by scalars.
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∂z + χ1(z)

)
and

∞∑
k=0

tk : tr
(
∂z + E(z)

)k
:

7→
n∑

i=1

(
1− t

(
∂z + χ1(z)

))−1
· · ·

(
1− t

(
∂z + χi(z)

))−1

×
(

1− t
(
∂z + χi−1(z)

))
· · ·

(
1− t

(
∂z + χ1(z)

))
.



Example. If n = 3, then

: cdet(∂z + E(z)) := ∂ 3
z + S1(z) ∂ 2

z + S2(z) ∂z + S3(z)

and

S1(z) 7→ χ1(z) + χ2(z) + χ3(z),

S2(z) 7→ χ1(z)χ2(z) + χ1(z) χ3(z) + χ2(z)χ3(z) + 2χ′1(z) + χ′2(z),

S3(z) 7→ χ1(z) χ2(z)χ3(z) + χ′1(z) χ2(z) + χ′1(z)χ3(z)

+ χ1(z) χ′2(z) + χ′′1(z).
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