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Invariants of a linear operator

Let V be a vector space over C and let
A: V=V

be a linear map. Choose a basis of V to write A as a matrix. By

changing the basis, we get the matrix transformed by
A TAT.

Question: What polynomials in the entries of A remain

unchanged? Answer: The coefficients of det(ul + A).
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Invariants in symmetric algebra

Let g be a simple Lie algebra over C.
The adjoint action of g on itself extends to the symmetric

algebra S(g) by

k
Y-X1...szle...[Y,Xi]...Xk, X €g.
i=1

The subalgebra of invariants is

S(g)! ={PeS(g)|Y-P=0 forall Yeg}.
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Let n =rankg. Then S(g)? = C[Py,...,P,], for certain
algebraically independent invariants Py, ..., P, whose degrees
dy,...,d, are the exponents of g increased by 1.

We have the Chevalley isomorphism
<:S(g)® — S()",
where | is a Cartan subalgebra of g and W is its Weyl group.

Here we use a triangular decomposition g=n_®hdny

and ¢ isthe projection S(g) — S(h) whose kernel is

S(g)(n-Uny).



Example: g = gly. Set

Enn ... EnN

ENl . ENN



Example: g = gly. Set

Enn ... EnN

ENl . ENN

and write

det(u+E)=u" + Cru" "'+ + Cy.



Example: g = gly. Set

Enn ... EnN

ENl . ENN

and write
det(u+E)=u" +CruM '+ + Cy.

Then  S(gly)® = C[Cy,...,Cy]



Example: g = gly. Set

Enn ... EnN

ENl . ENN

and write
det(u+E)=u" +CruM '+ + Cy.
Then  S(gly)® = C[Cy,...,Cy] and

c:det(u+E)— (u+A1)...(u+ M), i = Ejj.
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We have

Ty = tr EX € S(gly)®™W

forall k> 0,

S(gly)® = C[Ti, ..., Ty]

and

¢:Te— M4k

The invariants C, and T} are related by the Newton formulas.
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Center of universal enveloping algebra

The adjoint action of g on itself extends to the universal

enveloping algebra U(g) by
k

YoXi o Xe=) Xi. [V X X

i=1

The subalgebra of invariants is the center Z(g) of U(yg),

Z(g)={PcU(g)|Y-P=[Y,P]=0 forall Yeg}.

Its elements are called Casimir elements.
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We have
Z(g) :C[Pla'--apn]v

for certain algebraically independent invariants Py, ..., P,
whose degrees dy, . . ., d, are the exponents of g increased by 1.

We have the Harish-Chandra isomorphism
x :Z(g) — U(h)"sn,  with a shifted action of W.
We use the decomposition
U() = U(h) & (Ulg)ns +n-Ug))

and x isthe projection U(g) — U(h).
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Example. For g = gl set

Ey ... Enn

Evi ... Enn

The traces tr EX are Casimir elements:

N N
trE = ZE,’,’, trE? = ZE,']‘E]','
i=1

ij=1
N
wE = Y EjExEq,  efc.
ij k=1

Any Casimir element is a unique polynomial in tr E¥, 1 < k < N.
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For the Harish-Chandra images we have
N N N
X :;Eii = ;li-i- <2>7
N N
X : ZE,-jEj,- — Zl%—#— (N—1)
i=1

ij=1

where [; =E; —i+ 1.



For the Harish-Chandra images we have
N N N
X 1ZEii = Zli-i- <2>7
N N
X ZJZ:IEUEJ,HZZZ ;zi+<3),

where [; =E; —i+ 1.

In general,

N
) x(tr E™) w4 1
1+Z iN+ m+1 _H M+li :
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Many more constructions of Casimir elements for the Lie

algebras gly, oy and sp,, are known.

In particular, there is a linear basis of Z(gly) formed by the
quantum immanats S with A running over partitions with at

most N parts (Okounkov—Olshanski, 1996, 1998).

The Harish-Chandra images x(S ) are

the shifted Schur polynomials.
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Affine Kac—-Moody algebras

Define an invariant bilinear form on a simple Lie algebra g,
1
(X,Y) = o™ tr(adXadY),

where 4V is the dual Coxeter number.

For the classical types, (X,Y) = const-trXY,

N for g=sly, const = 1

h = N-=-2 for g = oy, const:%

n+1 for g=sp,,, const = 1.
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The affine Kac—Moody algebra g is the central extension
g=gltt'|oCK
with the commutation relations
(X[, Y[s]] = X, Y][r+s] +ré, (X, Y)K,

where X[r] = Xt"forany X e gand r € Z.

Question: What are Casimir elements for g?
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Given « € C, the universal enveloping algebra U, (g) at the

level « is the quotient of U(g) by the ideal generated by K — k.

A necessary condition for the existence of Casimir elements:

K is at the critical level, Kk = —hV.

Still, U_,v (g) is too small to contain Casimir elements:

the center of U_,v(g) is trivial.

By [Kac, 1974], the canonical quadratic Casimir element

belongs to an extension of U_,v (g).
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Example: g = gly. Defining relations for U(EIN):

Ejj[r] Euls] — Eul(s] Ej[r]
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The critical level is K = —N.



Example: g = gly. Defining relations for U(EIN):

Ejj[r] Euls] — Eul(s] Ej[r]

6;i O
:5kjEj][r+S]—61-1Ekj[r+s]+r(sr_s <5kj5il_ )K
’ N
The critical level is K = —N.

For all r € Z the sums

are Casimir elements.
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For r ¢ Z set

All C, are Casimir elements at the critical level.
They belong to the completed universal enveloping algebra

U_n(gly) defined as the inverse limit

~ ~

U_n(gly) = @U*N(&N)/Iim m — 00,

where 1,, is the left ideal of U_y(gly) generated by #gly[1].
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rez
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Introduce the (formal) Laurent series
Ej(e) =) Ejlla"
rez
and use the notation
Ej(@)y = D Bl Ey(). =) Bl
r<0 r=0
Given two Laurent series a(z) and b(z),

their normally ordered product is defined by

1a(2)b(z) : = a(z)+ b(z) + b(z) alz)-.
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Note

> = 3 (Eila) o Eil2) + Ea(E () ).

rez ij=1

Hence, all coefficients of the series
N
tr: E(Z)2 D= Z :Eij(Z)Eji(Z) :
ij=1

are Casimir elements.
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Similarly, all coefficients of the series

N

tr:E(z)?: = Z t Eij(2) Ej(2) Er(2)

ijk=1
are Casimir elements, where the normal ordering is applied

from right to left.
However, the claim does not extend to tr: E(z)* : !

Correction term: all coefficients of the series
tr:E(z)*: —tr: (8ZE(2))2 :

are Casimir elements.
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Invariants of the vacuum module

The vacuum module at the critical level is the g-module
V(g) = U_n(g)/U—pv(a)glt].

The Feigin—Frenkel center 3(g) is the algebra of g[f]-invariants
3(@) ={ve V() | glt]v =0}

Note V(g) = U(r'g[r""]) as a vector space.

Hence, ;(g) is asubalgebraof U(:'g[t']).
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Properties:

» The algebra 3(g) is commutative.

» The subalgebra 3(g) of U(r~'g[r~"]) is invariant with
respect to the translation operator T defined as the

derivation T = —d/dt.

Any element of 3(g) is called a Segal-Sugawara vector.
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Theorem (Feigin—Frenkel, 1992, Frenkel, 2007).
There exist Segal-Sugawara vectors Si,...,S, € U(r'g[r']),

n =rankg, such that

o~

3@ =C[T'S;|I=1,....,n, k>0

We call Sy, ..., S, a complete set of Segal-Sugawara vectors.

Explicit constructions of such sets and a new proof of
the theorem for the classical types A, B, C, D:

[Chervov-Talalaev, 2006, Chervov—M., 2009, M. 2013].
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Example: g = gly.
Set 7= —d/dr and consider the N x N matrix

T—I—Ell[—l] Elz[—l] ElN[—l]

e E[-1] = Ey[-1] T+ Exn[-1] ... Eon[—1]

Eni [—1] ENz[—l] . T+ ENN[—I]




The coefficients Sy, ..., Sy of the polynomial
cdet(r +E[-1]) =7V + §17¥ + - + Sy 7+ Sy

form a complete set of Segal-Sugawara vectors.



The coefficients Sy, ..., Sy of the polynomial
cdet(r +E[-1]) =7V + §17¥ + - + Sy 7+ Sy

form a complete set of Segal-Sugawara vectors.
ForN =2
cdet(r + E[—1]) = (7 + En[-1]) (7 + Ex[-1]) — Exi[-1]Epp[—1]

:T2—|—517+52



The coefficients Sy, ..., Sy of the polynomial
cdet(r +E[-1]) =7V + §17¥ + - + Sy 7+ Sy

form a complete set of Segal-Sugawara vectors.
ForN =2
cdet(r + E[—1]) = (7 + En[—1]) (7 + Ex[—1]) — Exi[-1]E12[—1]
=+ 851T+5,
with
St = En[—1] + Ex[-1],

Sy = En[—1] Ex[—1] — Eoi[—1] Er2[—1] + Exn[-2].
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To get another family of Segal-Sugawara vectors, expand
tr (T+E[—1])m = mon—"—Umlefl_F..._i_Umm
All coefficients U,,; belong to the Feigin—Frenkel center 3(gly ).

The elements Uy, ..., Uyy form

a complete set of Segal-Sugawara vectors.
The following are Segal-Sugawara vectors for gl :

tr E[—1], tr E[—1]?, tr E[—1)%, tr E[—1]* — r E[-2)*.
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The corresponding central elements in ﬁ_N(gT[N) are recovered

by the state-field correspondence map

Y : V(gly) — End V(gly)|[z,z']]
applied to Segal-Sugawara vectors, i.e., elements of 3(g).
By definition,

Y:Ejl—1] & Ej(z) = Y Eylr]z
reZ



Also,



Also,

and



Also,

Vi1l O, r >0
and
Y : Ej[—1]Ey[—1] — : E;j(2) Eu(2) :
We have
Y:twE[-1] — trE(z)
Y:trE[—1]? = tr: E(z)*:
Y:trE[—1] — tr: E(z)? :

Y twE[-1)* —wE[-2) = tr: E(2)* 1 —tr: (0.E(z)) :



Write

tr: (0. +E@)": =Uy,p(2) 0"+ + Uyp(2).



Write

tr: (0. +E@)": =Uy,p(2) 0"+ + Uyp(2).

Theorem. The coefficients of the Laurent series

Up1(2),.--, Uyn(2)

are topological generators of the center of fI_N(gT[N).
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Proving the Feigin—Frenkel theorem for the classical types:
» Produce Segal-Sugawara vectors Sy, ..., S, explicitly.

» Show that all elements TS, with/=1,...,nand k > 0 are

algebraically independent and generate 3(g).

Use the classical limit:
grU(rlglr™']) = s(r'glr])

which yields a g[r]-module structure on the symmetric algebra

S(r"ale™"]) = S(gle.")/aln).
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Let Xi,...,X; beabasisofgandlet P=P(X,...,X,;) bea

g-invariant in the symmetric algebra S(g). Then each element
Py =T P(Xi[—1],...,Xq[—1]), r>0,
isa g[t]-invariant in the symmetric algebra S(r~'g[r™1]).

Theorem (Rais—Tauvel, 1992, Beilinson—Drinfeld, 1997).
If Py,..., P, are algebraically independent generators of S(g)¥,
then the elements Py (,, ..., P, () With r > 0 are algebraically

independent generators of S(t_lg[t_l])gm.
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Take a triangular decomposition g=n_@®hdn

and consider the (affine) Harish-Chandra homomorphism
U(t‘lg[t‘l])b - U(r '),
the projection modulo the left ideal generated by ¢ 'n [r~].
The restriction to 3(g) yields the Harish-Chandra isomorphism
38 — wW(ty),

where W(Lg) is the classical W-algebra associated with the

Langlands dual Lie algebra “g [Feigin and Frenkel, 1992].
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Let ui,...u, be abasis of the Cartan subalgebra b§ of g.
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Classical W-algebras
Let ui,...u, be abasis of the Cartan subalgebra b§ of g.
Set p;[r] = wit" and identify
U "]) = C ..o palr] | 1 < 0] = P
The classical W-algebra W(g) is defined by
W(g)={PeP,|ViP=0, i=1,...,n},

the V; are the screening operators.
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Example. For W(gly) the operators Vi,...,Vy_; are

00 o 0
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Example. For W(gly) the operators Vi,...,Vy_; are

00 o 0
ZV’ <3,u, —r—1] a Oy [—r — 1])7

r=

> V ,ul NH—I[ ] m
E i(r) 7= = exXp § <.
r=0



Define the elements &,..., &y by the Miura transformation

(r+uy[=1) - (r =) = & e



Define the elements &,..., &y by the Miura transformation
(r+un[=1]) - (T m[=1]) =N + &7V ey

Explicitly,

Em=en(T+ m[-1],...,T 4+ py[-1])

is the noncommutative elementary symmetric function,



Then
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Then
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Also,
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Then

Wigly) = C[T*Ey, ..., T"EN | k> 0.

Also,
W(g[N) = C[TkHlv .o '7TkHN ’ k P 0]7

where

How = b (T + g [—1], ..., T + py[—1))

is the noncommutative complete symmetric function

h(x1, .., %) = Z Xiy - Xi,

il <K
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1 2 3 4 5 6 7 8

N SRR
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Multiplication of m-diagrams (m

1 2 3 4 5 6 7 8




Brauer algebra B,,(w)

Multiplication of m-diagrams (m = 8):

1 2 3 4 5 6 7 8

1 2 3 4 65 6 7 8

= W I
& 7 T v




For 1 < a < b < mdenote by s,, and ¢,, the diagrams

0= o N B

m



For 1 < a < b < mdenote by s,, and ¢,, the diagrams

The symmetrizer in the Brauer algebra B, (w)

is the idempotent s such that

sap s = s g, = g0m) and eap s = s eqp = 0.

m



Action in tensors



Action in tensors

Inthe case g = oy set w = N. The generators of 5,(N) act

in the tensor space

CVe...oCVN
—_————

m

by the rule

Sab V> Pyap, €ab = Qub, I<a<b<m,



Action in tensors

Inthe case g = oy set w = N. The generators of 5,(N) act

in the tensor space

CVg...oCVN
| ———
m
by the rule
Sab'_>Pab; €ab'_>Qab; 1<a<b§m,
where i"=N—-i+1 and

N
Oup = Z 1®(a=1) ® e ® 1®(b—a=1) ® eirjr @ 1®(m=b)
ij=1



In the case g =spy with N =2n set w = —N. The

generators of B, (—N) act in the tensor space (CY)®" by

Sab +r —Pap, €ab = —Qab, I1<a<b<m,



In the case g =spy with N =2n set w = —N. The

generators of B, (—N) act in the tensor space (CY)®" by
Sab +r —Pap, €ab = —Qab, I1<a<b<m,
with ¢, = —¢,.;, =1 for i=1,...,n and

N
Oup = Z Eigj 1®(a71) R e ® 1®(b7a71) ® ejrjr ® 1®(mfb)'
ij=1



In the case g =spy with N =2n set w = —N. The

generators of B, (—N) act in the tensor space (CY)®" by
Sab +r —Pap, €ab = —Qab, I1<a<b<m,
with ¢, = —¢,.;, =1 for i=1,...,n and

N
Oup = Z Eigj 1®(a71) R e ® 1®(b7a71) ® ejrjr ® 1®(mfb)'
ij=1

In both cases denote by S the image of the symmetrizer s(")

under the action in tensors,

$M c EndC’ ® ... ® EndCV .

m




Explicitly,

(m) _ * Pap B OQap
S -~ om! H (1+b—a N/2—|—b—a—1)’




Explicitly,

(m) _ * Pap B OQap
S -~ om! H (1+b—a N/2—|—b—a—1)’

and




Explicitly,

1 Py Oub
stm — L (142 - ).
m! 1<g<m Jrb—a N/24+b—a—1
and
S(m) _ i H (1 B Pab . Qab )
m! 1<a<b<m b—a n-bta+l
Set
()_w+m—2 N for g=on
Ame w+2m—2’ W=

—2n for g=sp,,.



Types B, C and D



Types B, C and D

Let g=oy, spy With N=2n or N=2n+1.



Types B, C and D

Let g=oy, spy With N=2n or N=2n+1.
Set

F,'.,':E,'j—Ej/i/ or Fl'j:Eij—E,'EjEj/i/



Types B, C and D

Let g=oy, spy With N=2n or N=2n+1.
Set

F,'.,':E,'.,'—Ej/i/ or Fl'j:Eij—E,'EjEj/i/

and

F,'j[r] = F,'jfr S ﬁ



Types B, C and D

Let g=oy, spy With N=2n or N=2n+1.
Set

Fij:Eij_Ej’i’ or Fij:Eij_5i5jEj’i’

and

F,'j[r] = F,'jfr S ﬁ
Combine into a matrix

N
Flr] = e; @ Fylr] € EndCY @ U_v (3).
ij=1



Theorem. All coefficients of the polynomial in 7 = —d/dt

Am(w) tr S (T +F[=1]1) ... (7 + F[~1]n)

:¢m07—m+¢ml7—mil ++¢mm



Theorem. All coefficients of the polynomial in 7 = —d/dt

o) S+ FE 1)) (- FE1))

:¢mOTm+¢mleil ++¢mm

belong to the Feigin—Frenkel center 3(g).



Theorem. All coefficients of the polynomial in 7 = —d/dt

V() e S (7 + F[=1]1) ... (7 + F[~1])
= ¢m07—m + ¢ml Tmil et ¢mm
belong to the Feigin—Frenkel center 3(g).

Moreover, in the case g = 0y,, the Pfaffian

PfF[—

ooy [=1] -+ Fo@n—1) oy [—1]

0'662,,

belongs to 3(02,) [M. 2013].



Corollary.  The elements  ¢,,, ¢4y, -, 0,,,, formacomplete

set of Segal-Sugawara vectors for 0,41 and sp,,.



Corollary.  The elements  ¢,,, dy4,- .., 0,,,, formacomplete

set of Segal-Sugawara vectors for 0,41 and sp,,.

The elements  ¢,,, ¢4, Poy_non_n: PEF[—1] form a

complete set of Segal-Sugawara vectors for 0,,.



Examples. Complete sets of Segal-Sugawara vectors:
for o3:  twF[-1?
for oy:  wF[-1]?, PfF[—1]
for os: wFl—1P, wF[—1]*— %trF[—2]2

for og:  wF[-1]?, wF[-1]* PfF[-1].



Examples. Complete sets of Segal-Sugawara vectors:
for o3:  twF[-1?
for oy:  wF[-1]?, PfF[—1]
for os: tr F[—1)?, twF[-1]* — 2w F[-2]?

for og:  wF[-1]?, wF[-1]* PfF[-1].

for sp,:  trF[—1]?

for sp,:  wF[-1?, twF[-1* -5t F[-2]



