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Invariants of a linear operator

Let V be a vector space over C and let

A : V → V

be a linear map. Choose a basis of V to write A as a matrix. By

changing the basis, we get the matrix transformed by

A 7→ T AT−1.

Question: What polynomials in the entries of A remain

unchanged? Answer: The coefficients of det(u I + A).
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Invariants in symmetric algebra

Let g be a simple Lie algebra over C .

The adjoint action of g on itself extends to the symmetric

algebra S(g) by

Y · X1 . . .Xk =

k∑
i=1

X1 . . . [Y,Xi] . . .Xk, Xi ∈ g.

The subalgebra of invariants is

S(g)g = {P ∈ S(g) | Y · P = 0 for all Y ∈ g}.
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Let n = rank g. Then S(g)g = C [P1, . . . ,Pn], for certain

algebraically independent invariants P1, . . . ,Pn whose degrees

d1, . . . , dn are the exponents of g increased by 1.

We have the Chevalley isomorphism

ς : S(g)g → S(h)W ,

where h is a Cartan subalgebra of g and W is its Weyl group.

Here we use a triangular decomposition g = n− ⊕ h⊕ n+

and ς is the projection S(g)→ S(h) whose kernel is

S(g)(n− ∪ n+).
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Example: g = glN . Set

E =


E11 . . . E1N

...
...

EN1 . . . ENN



and write

det (u + E) = uN + C1 uN−1 + · · ·+ CN .

Then S(glN)glN = C [C1, . . . ,CN ] and

ς : det (u + E) 7→ (u + λ1) . . . (u + λN), λi = Eii.
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We have

Tk = tr E k ∈ S(glN)
glN

for all k > 0,

S(glN)
glN = C [T1, . . . ,TN ]

and

ς : Tk 7→ λk
1 + · · ·+ λk

N .

The invariants Ck and Tk are related by the Newton formulas.
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Center of universal enveloping algebra

The adjoint action of g on itself extends to the universal

enveloping algebra U(g) by

Y · X1 . . .Xk =
k∑

i=1

X1 . . . [Y,Xi] . . .Xk.

The subalgebra of invariants is the center Z(g) of U(g),

Z(g) = {P ∈ U(g) | Y · P = [Y,P] = 0 for all Y ∈ g}.

Its elements are called Casimir elements.
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We have
Z(g) = C [P1, . . . ,Pn],

for certain algebraically independent invariants P1, . . . ,Pn

whose degrees d1, . . . , dn are the exponents of g increased by 1.

We have the Harish-Chandra isomorphism

χ : Z(g)→ U(h)Wsh , with a shifted action of W.

We use the decomposition

U(g) = U(h)⊕
(

U(g)n+ + n−U(g)
)

and χ is the projection U(g)→ U(h).
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tr E =
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i=1

Eii, tr E2 =

N∑
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tr E3 =

N∑
i,j,k=1

Eij Ejk Eki, etc.

Any Casimir element is a unique polynomial in tr E k, 1 6 k 6 N.
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For the Harish-Chandra images we have

χ :

N∑
i=1

Eii 7→
N∑

i=1

li +
(

N
2

)
,

χ :
N∑

i,j=1

Eij Eji 7→
N∑

i=1

l2i + (N − 1)
N∑

i=1

li +
(

N
3

)
,

where li = Eii − i + 1.

In general,

1 +
∞∑

m=0

(−1)m χ(tr Em)

(u− N + 1)m+1 =
N∏

i=1

u + li + 1
u + li

.
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Many more constructions of Casimir elements for the Lie

algebras glN , oN and sp2n are known.

In particular, there is a linear basis of Z(glN) formed by the

quantum immanats Sλ with λ running over partitions with at

most N parts (Okounkov–Olshanski, 1996, 1998).

The Harish-Chandra images χ(Sλ) are

the shifted Schur polynomials.
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Affine Kac–Moody algebras

Define an invariant bilinear form on a simple Lie algebra g,

〈X,Y〉 = 1
2h∨

tr(ad X ad Y),

where h∨ is the dual Coxeter number.

For the classical types, 〈X,Y〉 = const · tr X Y,

h∨ =



N for g = slN , const = 1

N − 2 for g = oN , const = 1
2

n + 1 for g = sp2n, const = 1.



Affine Kac–Moody algebras

Define an invariant bilinear form on a simple Lie algebra g,

〈X,Y〉 = 1
2h∨

tr(ad X ad Y),

where h∨ is the dual Coxeter number.

For the classical types, 〈X,Y〉 = const · tr X Y,

h∨ =



N for g = slN , const = 1

N − 2 for g = oN , const = 1
2

n + 1 for g = sp2n, const = 1.



Affine Kac–Moody algebras

Define an invariant bilinear form on a simple Lie algebra g,

〈X,Y〉 = 1
2h∨

tr(ad X ad Y),

where h∨ is the dual Coxeter number.

For the classical types, 〈X,Y〉 = const · tr X Y,

h∨ =



N for g = slN , const = 1

N − 2 for g = oN , const = 1
2

n + 1 for g = sp2n, const = 1.



The affine Kac–Moody algebra ĝ is the central extension

ĝ = g[t, t−1]⊕ CK

with the commutation relations

[
X[r],Y[s]

]
= [X,Y][r + s] + r δr,−s〈X,Y〉K,

where X[r] = X t r for any X ∈ g and r ∈ Z .

Question: What are Casimir elements for ĝ?
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Given κ ∈ C , the universal enveloping algebra Uκ(ĝ) at the

level κ is the quotient of U(ĝ) by the ideal generated by K − κ.

A necessary condition for the existence of Casimir elements:

K is at the critical level, κ = −h∨.

Still, U−h∨(ĝ) is too small to contain Casimir elements:

the center of U−h∨(ĝ) is trivial.

By [Kac, 1974], the canonical quadratic Casimir element

belongs to an extension of U−h∨(ĝ).
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Example: g = glN . Defining relations for U(ĝlN):

Eij[r]Ekl[s ]− Ekl[s ]Eij[r]

= δkj Ei l[r + s ]− δi l Ekj[r + s ] + rδr,−s

(
δkj δi l −

δij δkl

N

)
K.

The critical level is K = −N.

For all r ∈ Z the sums
N∑

i=1

Eii[r]

are Casimir elements.
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For r ∈ Z set

Cr =

N∑
i,j=1

(∑
s<0

Eij[s]Eji[r − s] +
∑
s>0

Eji[r − s]Eij[s]
)
.

All Cr are Casimir elements at the critical level.

They belong to the completed universal enveloping algebra

Ũ−N(ĝlN) defined as the inverse limit

Ũ−N(ĝlN) = lim
←−

U−N(ĝlN)/Im, m→∞,

where Im is the left ideal of U−N(ĝlN) generated by tmglN [t].
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Ũ−N(ĝlN) defined as the inverse limit
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Introduce the (formal) Laurent series

Eij(z) =
∑
r∈Z

Eij[r] z−r−1

and use the notation

Eij(z)+ =
∑
r<0

Eij[r] z−r−1, Eij(z)− =
∑
r>0

Eij[r] z−r−1.

Given two Laurent series a(z) and b(z),

their normally ordered product is defined by

: a(z)b(z) : = a(z)+ b(z) + b(z) a(z)−.
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Note

∑
r∈Z

Cr z−r−2 =

N∑
i,j=1

(
Eij(z)+Eji(z) + Eji(z)Eij(z)−

)
.

Hence, all coefficients of the series

tr : E(z)2 : =
N∑

i,j=1

: Eij(z)Eji(z) :

are Casimir elements.
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Invariants of the vacuum module

The vacuum module at the critical level is the ĝ-module

V(g) = U−h∨(ĝ)/U−h∨(ĝ)g[t].

The Feigin–Frenkel center z(ĝ) is the algebra of g[t]-invariants

z(ĝ) = {v ∈ V(g) | g[t]v = 0}.

Note V(g) ∼= U
(
t−1g[t−1]

)
as a vector space.

Hence, z(ĝ) is a subalgebra of U
(
t−1g[t−1]

)
.
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Hence, z(ĝ) is a subalgebra of U
(
t−1g[t−1]

)
.



Invariants of the vacuum module

The vacuum module at the critical level is the ĝ-module
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Properties:

I The algebra z(ĝ) is commutative.

I The subalgebra z(ĝ) of U
(
t−1g[t−1]

)
is invariant with

respect to the translation operator T defined as the

derivation T = −d/dt.

Any element of z(ĝ) is called a Segal–Sugawara vector.
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(
t−1g[t−1]

)
is invariant with

respect to the translation operator T defined as the

derivation T = −d/dt.
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Theorem (Feigin–Frenkel, 1992, Frenkel, 2007).

There exist Segal–Sugawara vectors S1, . . . , Sn ∈ U
(
t−1g[t−1]

)
,

n = rank g, such that

z(ĝ) = C [T kSl | l = 1, . . . , n, k > 0].

We call S1, . . . , Sn a complete set of Segal–Sugawara vectors.

Explicit constructions of such sets and a new proof of

the theorem for the classical types A,B,C,D:

[Chervov–Talalaev, 2006, Chervov–M., 2009, M. 2013].
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z(ĝ) = C [T kSl | l = 1, . . . , n, k > 0].

We call S1, . . . , Sn a complete set of Segal–Sugawara vectors.

Explicit constructions of such sets and a new proof of

the theorem for the classical types A,B,C,D:

[Chervov–Talalaev, 2006, Chervov–M., 2009, M. 2013].



Example: g = glN .

Set τ = −d/dt and consider the N × N matrix

τ + E[−1] =



τ + E11[−1] E12[−1] . . . E1N [−1]

E21[−1] τ + E22[−1] . . . E2N [−1]
...

...
. . .

...

EN1[−1] EN2[−1] . . . τ + ENN [−1]


.
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The coefficients S1, . . . , SN of the polynomial

cdet
(
τ + E[−1]

)
= τN + S1 τ

N−1 + · · ·+ SN−1 τ + SN

form a complete set of Segal–Sugawara vectors.
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S2 = E11[−1]E22[−1]− E21[−1]E12[−1] + E22[−2].
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To get another family of Segal–Sugawara vectors, expand

tr
(
τ + E[−1]

)m
= Um 0 τ

m + Um 1 τ
m−1 + · · ·+ Umm

All coefficients Umi belong to the Feigin–Frenkel center z(ĝlN).

The elements U11, . . . ,UN N form

a complete set of Segal–Sugawara vectors.

The following are Segal–Sugawara vectors for glN :

tr E[−1], tr E[−1]2, tr E[−1]3, tr E[−1]4 − tr E[−2]2.
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The corresponding central elements in Ũ−N(ĝlN) are recovered

by the state-field correspondence map

Y : V(glN)→ End V(glN)[[z, z
−1]]

applied to Segal–Sugawara vectors, i.e., elements of z(ĝ).

By definition,

Y : Eij[−1] 7→ Eij(z) =
∑
r∈Z

Eij[r] z−r−1.
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by the state-field correspondence map

Y : V(glN)→ End V(glN)[[z, z
−1]]

applied to Segal–Sugawara vectors, i.e., elements of z(ĝ).
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Write

tr :
(
∂z + E(z)

)m
: = Um0(z) ∂

m
z + · · ·+ Umm(z).

Theorem. The coefficients of the Laurent series

U11(z), . . . ,UN N(z)

are topological generators of the center of Ũ−N(ĝlN).
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Proving the Feigin–Frenkel theorem for the classical types:

I Produce Segal–Sugawara vectors S1, . . . , Sn explicitly.

I Show that all elements T kSl with l = 1, . . . , n and k > 0 are

algebraically independent and generate z(ĝ).

Use the classical limit:

gr U
(
t−1g[t−1]

) ∼= S
(
t−1g[t−1]

)
which yields a g[t]-module structure on the symmetric algebra

S
(
t−1g[t−1]

) ∼= S
(
g[t, t−1]/g[t]

)
.
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Let X1, . . . ,Xd be a basis of g and let P = P(X1, . . . ,Xd) be a

g-invariant in the symmetric algebra S(g).

Then each element

P(r) = T r P
(
X1[−1], . . . ,Xd[−1]

)
, r > 0,

is a g[t]-invariant in the symmetric algebra S
(
t−1g[t−1]

)
.

Theorem (Raïs–Tauvel, 1992, Beilinson–Drinfeld, 1997).

If P1, . . . ,Pn are algebraically independent generators of S(g)g,

then the elements P1,(r), . . . ,Pn,(r) with r > 0 are algebraically

independent generators of S
(
t−1g[t−1]

)g[t].
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Take a triangular decomposition g = n− ⊕ h⊕ n+

and consider the (affine) Harish-Chandra homomorphism

U
(
t−1g[t−1]

)h → U
(
t−1h[t−1]

)
,

the projection modulo the left ideal generated by t−1n+[t−1].

The restriction to z(ĝ) yields the Harish-Chandra isomorphism

z(ĝ)→W(Lg),

whereW(Lg) is the classicalW-algebra associated with the

Langlands dual Lie algebra Lg [Feigin and Frenkel, 1992].
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z(ĝ)→W(Lg),

whereW(Lg) is the classicalW-algebra associated with the

Langlands dual Lie algebra Lg [Feigin and Frenkel, 1992].



Take a triangular decomposition g = n− ⊕ h⊕ n+

and consider the (affine) Harish-Chandra homomorphism

U
(
t−1g[t−1]

)h → U
(
t−1h[t−1]

)
,

the projection modulo the left ideal generated by t−1n+[t−1].
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ClassicalW-algebras

Let µ1, . . . µn be a basis of the Cartan subalgebra h of g.

Set µi[r] = µi tr and identify

U
(
t−1h[t−1]

)
= C

[
µ1[r], . . . , µn[r] | r < 0

]
=: Pn.

The classicalW-algebraW(g) is defined by

W(g) = {P ∈ Pn | Vi P = 0, i = 1, . . . , n},

the Vi are the screening operators.
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Define the elements E1, . . . , EN by the Miura transformation

(
τ + µN [−1]

)
. . .
(
τ + µ1[−1]

)
= τN + E1 τ

N−1 + · · ·+ EN .

Explicitly,

Em = em
(
T + µ1[−1], . . . ,T + µN [−1]

)
is the noncommutative elementary symmetric function,

em(x1, . . . , xp) =
∑

i1>···>im

xi1 . . . xim .
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Multiplication of m-diagrams (m = 8):
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For 1 6 a < b 6 m denote by sab and εab the diagrams

q q q q q qq q q q q q
��
��
�PPPPP· · ·

· · ·
· · ·
· · ·

· · ·
· · ·

1 a b m

and q q q q q qq q q q q q� �� �· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

1 a b m

The symmetrizer in the Brauer algebra Bm(ω)

is the idempotent s(m) such that

sab s(m) = s(m) sab = s(m) and εab s(m) = s(m) εab = 0.
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Action in tensors

In the case g = oN set ω = N. The generators of Bm(N) act

in the tensor space
CN ⊗ . . .⊗ CN︸ ︷︷ ︸

m

by the rule

sab 7→ Pab, εab 7→ Qab, 1 6 a < b 6 m,

where i ′ = N − i + 1 and

Qab =
N∑

i,j=1

1⊗(a−1) ⊗ ei j ⊗ 1⊗(b−a−1) ⊗ ei ′j ′ ⊗ 1⊗(m−b).
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In the case g = spN with N = 2n set ω = −N. The
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In both cases denote by S(m) the image of the symmetrizer s(m)
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S(m) ∈ EndCN ⊗ . . .⊗ EndCN︸ ︷︷ ︸
m

.
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Explicitly,

S(m) =
1
m!

∏
16a<b6m

(
1 +

Pab

b− a
− Qab

N/2 + b− a− 1

)
,

and

S(m) =
1
m!

∏
16a<b6m

(
1− Pab

b− a
− Qab

n− b + a + 1

)
.

Set

γm(ω) =
ω + m− 2
ω + 2m− 2

, ω =


N for g = oN

−2n for g = sp2n.
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Types B, C and D

Let g = oN , spN with N = 2n or N = 2n + 1.

Set

Fi j = Ei j − Ej ′i ′ or Fi j = Ei j − εi εj Ej ′i ′

and

Fi j[r] = Fi j t r ∈ ĝ.

Combine into a matrix

F[r] =
N∑

i,j=1

eij ⊗ Fi j[r] ∈ EndCN ⊗ U−h∨
(
ĝ
)
.
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ĝ
)
.



Types B, C and D

Let g = oN , spN with N = 2n or N = 2n + 1.

Set

Fi j = Ei j − Ej ′i ′ or Fi j = Ei j − εi εj Ej ′i ′

and

Fi j[r] = Fi j t r ∈ ĝ.
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ĝ
)
.



Theorem. All coefficients of the polynomial in τ = −d/d t

γm(ω) tr S(m)
(
τ + F[−1]1

)
. . .
(
τ + F[−1]m

)
= φm 0 τ

m + φm 1 τ
m−1 + · · ·+ φmm

belong to the Feigin–Frenkel center z(ĝ).

Moreover, in the case g = o2n, the Pfaffian

Pf F[−1] =
1

2nn!

∑
σ∈S2n

sgnσ · Fσ(1)σ(2)′ [−1] . . .Fσ(2n−1)σ(2n)′ [−1]

belongs to z(ô2n) [M. 2013].
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belongs to z(ô2n) [M. 2013].



Theorem. All coefficients of the polynomial in τ = −d/d t

γm(ω) tr S(m)
(
τ + F[−1]1

)
. . .
(
τ + F[−1]m

)
= φm 0 τ

m + φm 1 τ
m−1 + · · ·+ φmm

belong to the Feigin–Frenkel center z(ĝ).
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Corollary. The elements φ22, φ44, . . . , φ2n 2n form a complete

set of Segal–Sugawara vectors for o2n+1 and sp2n.

The elements φ22, φ44, . . . , φ2n−2 2n−2,Pf F[−1] form a

complete set of Segal–Sugawara vectors for o2n.
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Examples. Complete sets of Segal–Sugawara vectors:

for o3 : tr F[−1]2

for o4 : tr F[−1]2, Pf F[−1]

for o5 : tr F[−1]2, tr F[−1]4 − 1
2

tr F[−2]2

for o6 : tr F[−1]2, tr F[−1]4, Pf F[−1].

for sp2 : tr F[−1]2

for sp4 : tr F[−1]2, tr F[−1]4 − 5 tr F[−2]2.
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