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Define the invariant bilinear form on a simple Lie algebra g,
(X,Y) = — tr(ad Xad Y)
) =38 r(ad X a ,

where 4V is the dual Coxeter number.

For the classical types, (X,Y) = const-trXY,

n for g=sl,, const = 1

h = N-=-2 for g = op, const:%

n+1 for g=sp,,, const = 1.
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The affine Kac—Moody algebra g is the central extension
g=glt,r JoCK
with the commutation relations
(X[r], Y[s]] = X, Y][r+s] +ré, (X, Y)K,
where X[r] = Xt" forany X e gand r € Z.

For any « € C denote by U,(g) the quotient of U(g) by the ideal
generated by K — k.

The value k = —h" corresponds to the critical level.
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Consider the left ideal 1=U_,v(g)g[f] and let
NormI = {v € U_,v(g) | Iv C I}

be its normalizer. This is a subalgebra of U_,v(g), and

I is a two-sided ideal of Norm 1.

The Feigin—Frenkel center 3(g) is the associative algebra

defined as the quotient

3(g) = NormI/L.
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Equivalently, consider the vacuum module at the critical level

V(g) = U_v(g)/L

Then

3(8) = {ve V(g) | glt]v = 0}.

Note V(g) = U(r'g[+"']) as a vector space.

Hence, ;(g) is asubalgebraof U(: 'g[r™']).
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Properties:

» The algebra 3(g) is commutative.

» The subalgebra 3(g) of U(r~'g[r~"]) is invariant with
respect to the translation operator T defined as the

derivation T = —d/dt.

Any element of 3(g) is called a Segal-Sugawara vector.
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Theorem (Feigin—Frenkel, 1992).
There exist Segal-Sugawara vectors Si,...,S, € U(r'g[r']),

n =rank g, such that

A~

3@ =C[Trs [ 1=1,...,n, k>0].

Earlier work: R. Goodman and N. Wallach, 1989, type A;
T. Hayashi, 1988, types A, B, C; V. Kac and D. Kazhdan, 1979.

Detailed exposition: E. Frenkel, 2007.

We call Sy, ..., S, a complete set of Segal-Sugawara vectors.
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Proof for the classical types.
» Produce Segal-Sugawara vectors Sy, ..., S, explicitly.

» Show that all elements TS, with/=1,...,nand k > 0 are

algebraically independent and generate 3(g).

Use the classical limit:
grU(rlgle™']) = s(r'glr])

which yields a g[r]-module structure on the symmetric algebra

S(t~'g[t~']): adjoint action then taking quotient modulo g[z].
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Let Xi,...,X; beabasisofgandlet P=P(X,...,X,;) bea

g-invariant in the symmetric algebra S(g). Then each element
Py =T P(Xi[—1],...,Xq[—1]), r>0,
isa g[f]-invariant in the symmetric algebra S(r~'g[r™1]).

Theorem (Beilinson—Drinfeld, 1997). If P, ..., P, are
algebraically independent generators of S(g)?, then the
elements Py (,, ..., P, ) With r > 0 are algebraically

independent generators of S(t_lg[t_l])gm.
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Take a triangular decomposition g=n_@®hdn

and consider the (affine) Harish-Chandra homomorphism
U(t‘lg[t‘l])b - U(r '),
the projection modulo the left ideal generated by 'n [r~].
The restriction to 3(g) yields the Harish-Chandra isomorphism
38 — wW(ty),

where W(Lg) is the classical WW-algebra associated with the

Langlands dual Lie algebra “g [Feigin and Frenkel, 1992].
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Classical W-algebras
Let ui,...u, be abasis of the Cartan subalgebra b§ of g.
Set p;[r] = wit" and identify
U "]) = C [l ... palr] | 1 < 0] =t P
The classical W-algebra W(g) is defined by
W(g)={PeP,|ViP=0, i=1,...,n},

the V; are the screening operators.
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Example. For W(gly) the operators Vi, ..., Vy_; are

00 o 0
ZV’ <3,u, —r—1] a Oy [—r — 1])7

r=

> V ,ul NH—I[ ] m
E i(r) 7= = exXp § <.
r=0



Set T = —d/dt and define the elements &,...,Ev by

the Miura transformation

(r+un=1]) . (T m-1) =+ &6+ 4 8



Set T = —d/dt and define the elements &,...,Ev by

the Miura transformation
(r+mwl=1]) . (T m[=1)) =+ & G

Explicitly,

Em=en(T+m[-1],....T + py[-1]) 1
is the noncommutative elementary symmetric function,
em(x1,...,xp) = Z Xiy o Xy,

where T =adr sothat 71 =0.
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Then

Wigly) = C[T*Ey, ..., T"EN | k> 0.

Also,

W(g[N) - C[TkHlv .o '7TkHN ’ k P 0]7

where

How = b (T + g1 [—1], ..., T + py[-1]) 1

is the noncommutative complete symmetric function

h(x1, .., %) = Z Xiy - Xi,-

Note W(sly) is the quotient of W(gly) by & =H; =0
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Explicit generators of 3(g). Type A

Set Eylr] = Ejt" € gly[t, 17"

and

N
El[r] = Z ej ® Ey[r] € EndCY @ U(gly[t,17"]).
ij=1
Consider the algebra

EndC" ®...® EndC" ® U(glyl[t, t_l])

m

and let H™) and A(™ denote the symmetrizer and

anti-symmetrizer in Ve .. @CN.
N e’

m
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Theorem. All coefficients of the polynomials in 7 = —d/dt
A (7 + E[~1]1) ... (1T + E[~1]»)

= quOTm +¢m1 ,7_m—1 + e +¢mm7

wH" (7 4+ E[-1]1) ...(7 + E[~1],)

= meTm +wm1 Tm_l + e +wmma

tr (T + E[_l])m = Tm0 T + T 1 Tmil ot T

belong to the Feigin—Frenkel center 3(gly ).



Theorem. All coefficients of the polynomials in 7 = —d/dt
A (7 + E[~1]1) ... (1T + E[~1]»)

= gmeTm +¢m1 ,7_m—1 T+ +¢mm7

tI'H(m)(T —i—E[—l]]) (7' —|—E[—1]m)

= Qz[)mOTm_‘_17bm17—m_1 + e +wmma

tr(T+E[_1])m = 7TmOTm + Tm1 Tmil + o T

belong to the Feigin—Frenkel center 3(gly ).

[Chervov-Talalaev, 2006, Chervov—M., 2009].



Under the Harish-Chandra isomorphism,

wAM (1 + E[—1]1) ... (7 + E[~1]»)

= e (T4 =], ..., 7+ pv[—1])



Under the Harish-Chandra isomorphism,

wAM (1 + E[—1]1) ... (7 + E[~1]»)

= em (T + 1],

and

awH™ (1 + E[-1)1) ... (T + E[-1]»)

> B (7 + 1], .

---,T+MN[—1D

T+ pn[—1]).



Under the Harish-Chandra isomorphism,
wA™ (1 + E[-1]1) ... (T + E[~1],))
= e (T4 =], ..., 7+ pv[—1])

and

awH™ (1 + E[-1)1) ... (T + E[-1]»)

= b (7 + pa[—1], . T+ v [—1]).

The image of tr (7 + E[—1])" is found from the Newton formula.
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Brauer algebra B,,(w)

Multiplication of m-diagrams (m = 8):

1 2 3 4 5 6 7 8

1 2 3 4 65 6 7 8

= W I
& 7 T v




For 1 < a < b < mdenote by s,, and ¢,, the diagrams

0= o N B

m



For 1 < a < b < mdenote by s,, and ¢,, the diagrams

The symmetrizer in the Brauer algebra B, (w)

is the idempotent s such that

sap s = s g, = g0m) and eap s = s eqp = 0.

m
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in the tensor space
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Action in tensors

Inthe case g = oy set w = N. The generators of B5,(N) act

in the tensor space

CVg...oCVN
| ———
m
by the rule
Sab'_>Pab; €ab'_>Qab; 1<a<b§m,
where i"=N—-i+1 and

N
Oup = Z 1®(a=1) ® e ® 1®(b—a=1) ® eirjr @ 1®(m=b)
ij=1



In the case g =spy with N =2n set w = —N. The
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In the case g =spy with N =2n set w = —N. The

generators of B, (—N) act in the tensor space (CY)®" by
Sab +r —Pap, €ab = —Qab, I1<a<b<m,
with ¢, = —¢,.;, =1 for i=1,...,n and

N
Oup = Z Eigj 1®(a71) R e ® 1®(b7a71) ® ejrjr ® 1®(mfb)'
ij=1

In both cases denote by S the image of the symmetrizer s(")

under the action in tensors,

$M c EndC’ ® ... ® EndCV .

m




Explicitly,
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Explicitly,

(m) _ * Pap B OQap
S -~ om! H (1+b—a N/2—|—b—a—1)’

and




Explicitly,

1 Py Oub
stm — L (142 - ).
m! 1<g<m Jrb—a N/24+b—a—1
and
S(m) _ i H (1 B Pab . Qab )
m! 1<a<b<m b—a n-bta+l
Set
()_w+m—2 N for g=on
Ame w+2m—2’ W=

—2n for g=sp,,.
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Types B, C and D

Let g=oy, spy With N=2n or N=2n+1.
Set

Fij:Eij_Ej’i’ or Fij:Eij_5i5jEj’i’

and

Fij[r] = Fij e g[t, til].

Combine into a matrix

N
Flr] = e;®Fij[r] € EndC" @ U(g[t,r")).
ij=1



Theorem. All coefficients of the polynomial in 7 = —d/dt

Am(w) tr S (T +F[=1]1) ... (7 + F[~1]n)

:¢m07—m+¢ml7—mil ++¢mm



Theorem. All coefficients of the polynomial in 7 = —d/dt

o) S+ FE 1)) (- FE1))

:¢mOTm+¢mleil ++¢mm

belong to the Feigin—Frenkel center 3(g).



Theorem. All coefficients of the polynomial in 7 = —d/dt

V() e S (7 + F[=1]1) ... (7 + F[~1])
= ¢m07—m + ¢ml Tmil et ¢mm
belong to the Feigin—Frenkel center 3(g).

Moreover, in the case g = 0y,, the Pfaffian

PfF[—

ooy [=1] -+ Fo@n—1) oy [—1]

0'662,,

belongs to 3(02,) [M. 2013].
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The Harish-Chandra image of the polynomial

Am(N) tr 8™ (1 + F[=11) ... (7 + F[~1]m)
equals:

hm(T + [, oo+ 1], 7 — 1], T — ,ul[—l]),

for the Lie algebra g = oy with N =2n+ 1;



The Harish-Chandra image of the polynomial

Am(N) tr 8™ (1 + F[=11) ... (7 + F[~1]m)
equals:

B (74 iy [, T [ 1], = (1], = g [ 1]),

for the Lie algebra g = oy with N =2n+1; and

Sha (T4 =1, T A+ g (21,7 =[], o7 — g [1])

(4 =7 17 = (=17 = g [-1]),

for the Lie algebra g = oy with N = 2n.



The Harish-Chandra image of the polynomial
Yn(=2n) tr S (7 + F[=1]1) ... (T + F[~1]))

with 1 <m < 2n+1 equals:



The Harish-Chandra image of the polynomial
Ym(—2n) tr S (7 + F[~1]1) ... (7 + F[~1]n)
with 1 <m <2n+1 equals:
em(T+ 1y [=1], o T+ =1 T — [, — gy [—1])

for the Lie algebra g = sp,,.



In the case g = 0,,, the Harish-Chandra image of the Pfaffian

PfF[—

o(l)o(2) [ ] FG'(ZH*])U(ZH)/[_I]

O’GGzy,

is found by



In the case g = 0,,, the Harish-Chandra image of the Pfaffian

1
2np!

PfF[_l] = Z sgnao - Fo(l) 0(2)’[_1] s Fo‘(2n71) U(Zn)’[_l]

ge€Gy,

is found by

PEF[—1] s (s [~1] = T) . (,[-1] = T) 1.

[M.—Mukhin, 2012].
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Corollary.  The elements  ¢,,, 0,44, ..., 0,,,, formacomplete

set of Segal-Sugawara vectors for 0y,11 and sp,,.

The elements  ¢,,, ¢4, oy_non_n: PEF[—1] form a

complete set of Segal-Sugawara vectors for 0.



Calculation of Harish-Chandra images

Bethe subalgebra Yangian characters
[transfer matrices] [Grothendieck ring]
Harish-Chandra
B(g) isomorphism charY(g)
classical limit classical limit
~ Harish-Chandra L
5(9) isomorphism W( g)
Feigin—Frenkel center classical W-algebra

[Segal-Sugawara vectors]



The Yangian Y(g) is an associative algebra with countably

many generators tlg ), l(jz),... wherei,j=1,...,N.



The Yangian Y(g) is an associative algebra with countably

(1,2

many generators tU , l] ,..

. wherei,j=1,...,N.

Set 1 i
tij(”) = 51] + tz(j )Mil + tl(j )u,2 +... € Y(g)[[ufl]]



The Yangian Y(g) is an associative algebra with countably

(1,2

many generators r; ', ..

. wherei,j=1,...,N.

Set 1 i
tij(”) = 51] + tz(j )Mil + tl(j )u,2 +... € Y(g)[[ufl]]

The defining relations of Y(g) are

Rix(u —v) Ty (u) To(v) = To(v) T1 (u) Riz(u — v)



The Yangian Y(g) is an associative algebra with countably

many generators tfjl), 1(12)7 ... wherei,j=1,...,N.

Set 1 i
tij(”) = 51] + tz(j )Mil + tl(j )u,2 +... € Y(g)[[ufl]]

The defining relations of Y(g) are
Rix(u —v) Ty (u) To(v) = To(v) T1 (u) Riz(u — v)

with quotient taken by the ideal generated by the center, where

N N
u) = Z eij & 1 X tlj(l/t) and Tz(u) = Z 1 ® eij ® tlj(u)

ij=1 ij=1

EndC" ® EndC" @ Y(g)[[u""]].
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Forany a € C the mapping

tij(u) — t,'j(u — Cl)
defines the shift automorphism of Y(g).

The Yangian Y(g) is a Hopf algebra with the coproduct

A tij(u »—>Zt,k ® tij(u



Forany a € C the mapping

tij(u) — t,'j(u — Cl)

defines the shift automorphism of Y(g).

The Yangian Y(g) is a Hopf algebra with the coproduct

A tij(u »—>Zt,k ® tij(u

It is equipped with the universal R-matrix

R(u) € Y(g) @ Y(g)[[u"]]

(a “universal solution" of the Yang—Baxter equation).
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Bethe subalgebra

Let V be a finite-dimensional representation of Y(g),
my : Y(g) = EndV
The corresponding transfer matrix ty, (u) is
ty(u) = try(my ®id) (R(u)) € Y(g)[[u"]].

Key property:

> ty(u) ty(v) =ty (v) t,(u) forall V.and w.
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More properties:
» If 0V —>W-—=U-—0 isan exact sequence, then
ty (u) =ty (u) + ty(u);
> tygw () = ty(u) ty (u).
The Bethe subalgebra B(g) of Y(g) is generated by all
coefficients of the series t, (u) for all representations V.

The map V — t, () is @ homomorphism

Rep Y(g) — B(g)[[u']].
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generate a subalgebra of Y(g) isomorphic to U(g).
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The elements t},l) with 1 <i,j <N

generate a subalgebra of Y(g) isomorphic to U(g).

Take a standard triangular decomposition

g=n_dhdny with h = span of {t(l)}

Let J be the left ideal of Y(g) generated by

all elements t(’) with 1 <i<j<N and r> 1.

The Harish-Chandra homomorphism is the projection

pr:Y(g)" — Y(a)"/(InY(q)").

Set )\,'(M) = pr(ti,-(u)) for i=1,...,N.
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The character x (u) of the Yangian module V is

xv(u) = proty(u).

Properties:
» The homomorphism
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Characters

The character x (u) of the Yangian module V is

xv(u) = proty(u).

Properties:
» The homomorphism

x:RepY(g) » (N(u—a)|i=1,...,N, a€C)
is injective.

» The image of x is described as the intersection of the

kernels of the screening operators.
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The R-matrix is

Ru)=1-Pu' +Qu—N/2+1)""

[A. and Al. Zamolodchikov, 1979],

N
0= Z ejj @ eyrjr € End C" @ End (CN,
ij=1

where i’ =N —i+ 1.



Types Band D: g=oy

The R-matrix is

Ru)=1-Pu' +Qu—N/2+1)""
[A. and Al. Zamolodchikov, 1979],
N
0= Z ejj @ eyrjr € End C" @ End (CN,
ij=1
where i’ =N —i+ 1.
Example. The representation of oy with the highest weight

(m,0,...,0) extends to the Yangian Y (oy).

This is one of the Kirillov—Reshetikhin modules.
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We have V:S(m)((CN@...@(CN),
—_———

m

where 5" is the Brauer algebra symmetrizer,

m)_i H Raba_

1<a<b<m

Proposition.

)= D M) Ayt 1) N, (- m = 1),

1< < <imSN

with different conditions for B, and D,,:
> 07,41 index n+ 1 occurs at most once;

> 09,0 indices n and n + 1 do not occur simultaneously.
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The R-matrix is
Ru)=1-Pu'+Qu—-n—-1)"

with 2n
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Type C: g = 5Py,

The R-matrix is
Ru)=1-Pu'+Qu—-n—-1)"

with 2n
0= Z gigjejj ® ejrjr € End C*" @ End C?",
ij=1
where i’ =2n—i+1 and g =—¢,; =1 fori=1,...,n.

Example. The representation of sp,, with the highest weight

(1,...,1,0,...,0) with m < n extends to a fundamental module
N——

of the Yangian Y (sp,,,).
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where (" is the Brauer algebra symmetrizer,

m)_i H Rab _a

1<a<b<m

Proposition.
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We have V=s8m(c’g.. . eC™),
S———

m

where (" is the Brauer algebra symmetrizer,
§m) — — H Rup(b — a).
1<a<b<m

Proposition.
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We have V=s8m(c’g.. . eC™),
S———

m

where (" is the Brauer algebra symmetrizer,
m)— II Rup(b — a).
1<a<b<m

Proposition.

)= > M@ Ay —1) N, (w—m+ 1),

1<i1 <+ <im<2n
with the condition that if both i and i’ occur among the
summation indices as i = i, and i’ = i; forsome 1 <r <s<m

then s — r < n — i; also [Kuniba—Okado—-Suzuki—Yamada, 2002].
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Introduce a filtration on the algebra

of formal series Y(g)[[u~"', 0,]] by setting

deg tl(jr)

=r—1, degu~! = degd, = —1.
The associated graded algebra is U(g[f]) [[u~", 9,]] with

Fiil =1, r>o.

The component of degree —1 of the matrix 7'(u)e? — 1

equals 0, + F(u), where

N
ZF W F =) e @ Fylr]

ij=1



Hence (taking g = oy with N = 2n + 1), the series



Hence (taking g = oy with N = 2n + 1), the series
Am(N) tr 8™ (3, + Fi(w)) ... (8 + Fu(u))
coincides with the component of degree —m of the series

Ym(N) tr 50 (Tl(u)ea” _ 1) o (Tm(u)e&, - 1)‘



Hence (taking g = oy with N = 2n + 1), the series
Am(N) tr 8™ (3, + Fi(w)) ... (8 + Fu(u))
coincides with the component of degree —m of the series
Y (N) tr S (Ty () e — 1) ... (T ()™ —1).
By the character formula, the Harish-Chandra image equals

= m— N-—+m—2 8
St (VI Y dwe e
k=0 I<ip <<k SN

with the condition that » 4+ 1 occurs among the summation

indices iy, . .., i, at most once.
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Commutative subalgebras

The Feigin—Frenkel center 3(g) is a commutative subalgebra of

U(r~'g[+~")). Its image under the evaluation homomorphism
ev,: U(t 'g[t™']) — U(g), X[r]— X7, Xeg
is @ commutative subalgebra of U(g).

It can be made into a maximal commutative subalgebra by a

quantum version of the shift of argument method.

This subalgebra is a quantization of the Mishchenko—Fomenko

subalgebra of the Poisson algebra S(g).
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Type A

Suppose that a matrix B = diag[by, ..., by] is a regular element

of the Cartan subalgebra of gly so that the »; are all distinct.
Expand the column determinant

cdet(0, —B—Ez ") =N + Li(2) 0N '+ -+ Ly_1(2) 0, + L (2)
andlet  Li(z) = Lo+ Lyiz ' + -+ Ligz -

Corollary. The elements L;; with 1 <i <k < N are free

generators of a maximal commutative subalgebra of U(gly).
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Types B, C and D
Let B be a regular element of the Cartan subalgebra of g.
Expand the trace
V(@) tr S, — By — F1z7) ... (8. — By — Fz ")
= 1y0(2) 0" + Lu1(2) O 4+ + Lym(2)

and let
lmm(z) = lrgo;zz + 1,1(11,21 Z_l + o+ 111(1”};2 7M.

In the case of 0,, expand the Pfaffian

PEB+ Fz ') =p@ 4 pMzt g p,



Corollary. In types B and C the elements 1,1(11,21, . ,1,51"2,2 with
m=2,4,...,2n are algebraically independent generators of a

maximal commutative subalgebra of U(o0,,+1) and U(sp,,).



Corollary. In types B and C the elements 1,1(11,21, . ,1,5,":,2 with
m=2,4,...,2n are algebraically independent generators of a

maximal commutative subalgebra of U(o0,,+1) and U(sp,,).

In type D the elements 13, ..., 1) withm = 2,4,...,2n — 2
and p", ... p( are algebraically independent generators of a

maximal commutative subalgebra of U(o,,,).



