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was constructed by B. Feigin and E. Frenkel, 1990,
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More recently, the W-algebras W*(g,f) were introduced by
V. Kac, S.-S. Roan and M. Wakimoto, 2004.
Here f € g is a nilpotent element.

Wk(g,f) = W¥(g) for the principal nilpotent f.

The classical W-algebra W(g) is obtained as a limit of W*(g)

when k — oco. The algebra W(g) is commutative.

It plays the role of the Weyl group invariants in the affine
Harish-Chandra isomorphism ;(g) = W(%g)
[Feigin—Frenkel, 1992].
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Moreover, the Feigin—Frenkel duality provides an isomorphism

WH(g) = WX (Lg) it (k+hY)(K +LhY)rY =1.

In particular,

3(@) =W (g) 2 W(tg).

Recent work: representation theory of W-algebras
[T. Arakawal; classical YW-algebras and integrable Hamiltonian

hierarchies [A. De Sole, V. Kac, D. Valeri].
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Connection with finite WW-algebras:

affine W-algebra
W(g.f)

Zhu algebra

W(g.f)
finite W-algebra

[T. Arakawa, 2007, A. De Sole, V. Kac, 2006]



Connection with finite WW-algebras:

affine W-algebra universal affine vertex algebra
W (g.f) - VXg)
Zhu algebra f=0
W(a.f) - U(g)
finite WW-algebra universal enveloping algebra

[T. Arakawa, 2007, A. De Sole, V. Kac, 2006]
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Vacuum modules

Let b be a finite-dimensional Lie algebra with an invariant
symmetric bilinear form ( , ). Its Kac—Moody affinization is the

centrally extended Lie algebra b= b[t,t~'] © C1 with
[(X[r], Y[s]] = (X, Y][r +s] +ré, (X, V)1,

where X[r] = Xt" forany X e band r € Z.
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The vacuum module V(b) over b is defined by

V(b) = U(b) Byeyect C;

where C is regarded as the one-dimensional representation of

b[r] © C1 on which bz] acts trivially and 1 acts as 1.
By the PBW theorem, V(b) = U(r~'b[r~']) as a vector space.

V(b) is a vertex algebra with the vacuum vector 1, the
translation operator 7 : V(b) — V(b) which is the derivation

T = —0, of the enveloping algebra X[—r| — rX[—r — 1], and
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the following state-field correspondence map

Y:a— a(z), where a € V(b) and

a(z) = Za(,,)z_”_l, agy : V(b) = V(b).

nez

By definition, for any X € b the map Y acts by

X[— ZX =l

nez

8"
X[—r—l]»—)—Z'X(z), r=0.
r!
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Furthermore, if a = X[—r — 1] and b € V(b) then
ab— :a(z)b(z) :,
where the normally ordered product is defined by
1a(2)b(z) : = alz)4 b(z) +b(z) alz)-

with

a(z), = Za(n)["*l, a(z)_ = Za(n)zfnfl

n<0 n=0
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Vertex algebra axioms

The state-field correspondence map Y thus equips V(b) with
a family of bilinear n-products: (a,b) — a(,)b forn € Z,

such that a(,)b = 0 for n > 0. Furthermore,

> 1(z) = idy(p),

v

a(z)1is a Taylor series in zand a(z)1|__, = afora € V(b),

z=0

v

71=0 and [r,a(z)] = d.a(z) fora € V(b),

v

for any a,b € V(b) there exists N € Z such that

(z = w)Va(z),b(w)] = 0.
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We will regard V(b) as an algebra with respect to the
(—1)-product (a,b) — a(_y)b.

This product is quasi-associative:

(a—nyb)(—ne

= a(n(bne) + Y a2 (boye) + Y b (age

j=0 j=0

Note that if a = X[—r — 1] and b € V(b) then
a(,l)b =ab

so we will omit the (—1)-subscript in such cases.
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W-algebra Wk(g) for g = gly

We use the definition of W¥(g) via the BRST cohomology
following E. Frenkel and D. Ben-Zvi, 2004.

Set b = span of {e; | i > j}, m = span of {e;; | i > j}.

Given k € C consider the affinization b of b with respect to the

form: fori>i"andj >’
1
<eii/’ ejj’) = 5ii’5jj’(k+N) <5ij — Ni>

Let V¥(b) be the corresponding vacuum module over b.
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The W-algebra Wk(g) is a vertex subalgebra of V*(b).
To define it, introduce the Lie superalgebra
d=dp®a; with do=5b, @ =mlr ],

with the adjoint action of @y on a;, whereas a; is regarded as a

supercommutative Lie superalgebra.

We will write v;;[r] = ej; 7" for ¢;;#"~! € m[t,r~!] when it is

considered as an element of qj.
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Let V¥(a) be the vacuum module for @ induced from the
representation C of (b[t]®C1)@ m[s] where b[f] C ap and

m[f] C a; acttrivially and 1 acts as 1.

Equip V*(a) with the (—1)-product and introduce its derivation
Q : Vk(a) = V¥(a)

determined by the following properties.

First, 0 commutes with 7 = —9,.
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Furthermore, [Q,&] = (V&) — (EW)°P

_om——l—en[—l] —1 0
e ex[—1] at+en[—1] -1
eNl[—l] ENQ[—l]

for a =k+N -1 and

and [Q, V] = U2 with




Furthermore, [Q,&] = (VE)®P — (EV)® and [Q, V] = ¥? with

_a7+e11[—1] -1 0 ... 0 _
£ = e [—1] artep[-1] —1 ... 0
-1

evi[—1] ena|—1] oo aT Heyn[—1]]

for a =k+N -1 and

0 0 0 0
ol 0 0o
0

|Un1[0] Ywa[0] ... Yyn—a[0] O



Explicitly, [0, £] = (¥ E)P — (£T)° reads

Jj—1

[0, ¢ji[=1]] = eail—1] 1a[0]

a=i
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Explicitly, [0, £] = (¥ E)P — (£T)° reads
j—1

[Qy eji[_l]] = Z eai[_l] wja[o]

- Z Vail0] €ja[—1] + atbji[—1] + j114[0] — 1ji-1[0].

a=i+1

The derivation Q is the differential of the BRST complex of the

quantum Drinfeld—Sokolov reduction.



Explicitly, [0, £] = (¥ E)P — (£T)° reads
j—1

[0, ¢ji[=1]] = eail—1] 1a[0]

a=i

= > Vail0] eal=1] + @il =1] + t1 0] = 9ji—1[0]-

a=i+1
The derivation Q is the differential of the BRST complex of the
quantum Drinfeld—Sokolov reduction.

The definition of the WW-algebra can be stated in the form

W¥(g) = {v € V(o) | v = 0}.
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Generators of W¥(g)

Recall that
o + ey [—1] —1 0
ex[—1] at+en[-1] -1
8 =
evi[—1] ena[—1]
and write

cdet £ = (ar)N + WD (ar)VN 4o 4w,

w e vE(b).
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Explicitly,
cdet £ =

Z (a7 + e[—l})kl fo+1 (a7 + e[—l])kzkI+1 o (aT+ e[_l])kn1k/n—1+1’

summedover m=1,...,N and O0=ky <k <---<k,=N.

Theorem [T. Arakawa—A. M., 2014]

All coefficients W) ... W) of cdet £ belongto Wk(g).

Moreover, they generate the W-algebra W¥*(g) C V¥(b).



Take the reverse determinant of the matrix £ obtained from &

by replacing a with § = —a=—(k+N —1).

20



Take the reverse determinant of the matrix £ obtained from &

by replacing a with 5= —-a = —(k+ N — 1). We have

rev-det & =

Z (B + 6[_1])lol1+1 (BT + e[—l])l, Letl " (87 + e[_IDIm—l Int17

20



Take the reverse determinant of the matrix £ obtained from &

by replacing a with 5= —-a = —(k+ N — 1). We have

rev-det & =

Z (B + 6[_1])lol1+1 (BT + e[—l])l, Letl " (87 + e[_IDIm—l Int17

summedover m=1,....N and N=Ily>1;>--->1,=0.
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Take the reverse determinant of the matrix £ obtained from &

by replacing « with 8 = —-a = —(k+ N —1). We have

rev-det £ =
Z (BT + e[_l])101,+1(/37' + e[_l])z, Ll " (BT + e[_IDIm_I In+1°
summedover m=1,....N and N=Ily>1;>--->1,=0.
The coefficients UM, ..., U™) defined by

rev-det & = (7)Y + UM (Br)N 4 UW),

are generators of the W-algebra W*(g).

20



Example. W¥(sly) = Wk(gl,) /(WD = 0).

WO = eq[~1] + ex[~1],

w® = eii[—1]en[—1] 4+ (k+ 1) exn[—2] + e [—1].

21



Example. W¥(sly) = Wk(gl,) /(WD = 0).

w = e1[—1] + exn]—1],

W = eyi[—1]exn[—1] + (k+ 1) en]-2] + e1[1].

The coefficients L, of the series L(z) = Y(w) given by

L(z) = ZL” Z_”_27 w =

nez

generate the Virasoro algebra.

21
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Miura map

Introduce the abelian subalgebra [ C gly by

[=spanof{e;|i=1,...,N}.
For k € C consider the affinization T of [ with respect to the form
<€,‘,‘ e--) = (k+N) (5, — l)
» =] J N

Let V() be the corresponding vacuum module.

The projection b — [induces the vertex algebra homomorphism
VE(b) — V(D).

22



By restricting to the subalgebra W*(g) c V*(b) we get the map
T Wh(g) — VK1),

called the Miura map (or Miura transformation).
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By restricting to the subalgebra W*(g) c V*(b) we get the map
T Wh(g) — VK1),

called the Miura map (or Miura transformation).

This is an injective vertex algebra homomorphism [T. Arakawal.

For generic k we have [B. Feigin and E. Frenkel]:

N—1
imY = () ker Vi,
i=1

where V; are the screening operators acting on V([).

23
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To definethe V;, fori=1,...,N — 1 set

Vi(z) = exp (Z b"r[r]zr> exp (Z bir[r]zr>,

r<0 r>0

where

bilr] = klN (e,-i[r} - €i+1i+1[r]>‘
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To definethe V;, fori=1,...,N — 1 set

Vi(z) = exp (Z lh}[r]zr) exp (Z bir[r]zr>,

r<0 r>0

where

bilr] = klN (e,-i[r} - ei+1i+1[”]>'

)

For the screening operator we have V; = V,.(1 , Where

Vi(z) = Z vim g

nez

24



Under the Miura map we have

T:cdet & (ar +eri[—1]) ... (a7 +enn[—1]).
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Under the Miura map we have
T:cdet & (ar +eri[—1]) ... (a7 +enn[—1]).

Expand the product as

(ar)N +wD) (ar)V T 4. W) w e VE(1).
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Under the Miura map we have
T:cdet & (ar +eri[—1]) ... (a7 +enn[—1]).

Expand the product as

(ar)N +wD) (ar)V T 4. W) wl e V(D).

Corollary [Fateev and Lukyanov, 1988].
The coefficients w!) ..., w™) generate the W-algebra

Wh(g) € V(D).
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Suppose that (k+ N)(K' + N) = L.
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Suppose that (k+ N)(k'+ N) = 1. We have

(k+N—-1)7+eii[-1])... ((k+N—=1)7 +eyn[-1])

= (—k— N)N(a’T + e’ll[—l]) . (a/T + erN[—l])

26



Suppose that (k+ N)(k'+ N) = 1. We have

(k+N—-1)7+eii[-1])... ((k+N—=1)7 +eyn[-1])
= (—k —N)N(O/T + e’ll[—l]) . (a/T + erN[—l])

for

o =K+N-1 and ¢,[-1]=-""
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Suppose that (k+ N)(K' + N) = 1. We have

(k+N—-1)7+eii[-1])... ((k+N—=1)7 +eyn[-1])
= (—k —N)N(O/T + e’ll[—l]) o (a/T + ef\,N[—l])

for

o =K+N-1 and ¢,[-1]=-""

Corollary [Feigin—Frenkel duality].

Wk(g) = Wk (g).

26
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The W-algebra W¥(gly,f)

Fix a partition of N and depict it as the right justified pyramid

27



The W-algebra W¥(gly,f)

Fix a partition of N and depict it as the right justified pyramid

Let p1 > p» > --- > p, be the lengths of the rows

and ¢; < g2 < --- < g; be the lengths of the columns.
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Number the bricks of a pyramid = by the rule

W
(91
O\\]OO‘
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Number the bricks of a pyramid = by the rule

W
(91
O\\]OO‘
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Define the corresponding nilpotent element f € gl by

£=> e

summed over all dominoes occurring in :
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Number the bricks of a pyramid = by the rule

W
(91
O\\]OO‘

1]2]4

Define the corresponding nilpotent element f € gl by

f=2 e
summed over all dominoes occurring in :

f = e + es + ess + €53 + €75.
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Number the bricks of a pyramid = by the rule

W
(91
O\\]OO‘

1]2]4

Define the corresponding nilpotent element f € gl by

f=2 e
summed over all dominoes occurring in :

f = e + es + ess + €53 + €75.

Introduce a grading on gly by dege;; = col(j) — col(i).

28



We have

gly = @ 9is

i€Z

f€eg1.
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We have

In particular,

oy=Pe feor

i€Z

g0 = oly, Dol - Saly
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We have
oy=Pe feor
€7

In particular,

g0 = oly, Dol - Saly

Set

b:@gp and m:@gp.

p<0 p<0
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We have
oy=Pe feor
i€Z
In particular,

go =0l Daly, @Dl

Set

b:@gp and m:@gp.

p<0 p<0

Equip b with the symmetric invariant bilinear form

k+N 1
X,Y) = +N trp(adXadY) — Etrgo(aand Y).

29



Consider the affinization b of b with respect to this form and let

V(b) be the corresponding vacuum module over b.
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Consider the affinization b of b with respect to this form and let

V(b) be the corresponding vacuum module over b.
Introduce the Lie superalgebra
d=do®a; with do=5b, @ =mlr'],

with the adjoint action of @, on a;, whereas a; is regarded as a

supercommutative Lie superalgebra.
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Consider the affinization b of b with respect to this form and let

V(b) be the corresponding vacuum module over b.
Introduce the Lie superalgebra
d=do®a; with do=5b, @ =mlr'],

with the adjoint action of @, on a;, whereas a; is regarded as a

supercommutative Lie superalgebra.

We will write wji[’"} = €jitr_1 for ejilr_l S m[t, l_l].
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Equip the vacuum module V*(a) with the (—1)-product and

introduce its derivation

Q : V¥(a) = V¥(a)
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Equip the vacuum module V*(a) with the (—1)-product and
introduce its derivation
0 : Vk(a) — V¥(a)

for which we have

J

Q?ejl Z wja eat[ 1]_ Z eja I/Jaz ]

col(a)=i col(a)=i+1
(k +N = qeoli ) Yji[—1] + ¥+ i[0] — ;- [0]

for dominoes i~i and jj* occurring in 7.
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Equip the vacuum module V*(a) with the (—1)-product and

introduce its derivation
Q : V¥(a) = V¥(a)

for which we have

J

Q?ejl Z wja eat[ 1]_ Z eja I/Jaz ]

col(a)=i col(a)=i+1
(k +N = qeoli ) Yji[—1] + ¥+ i[0] — ;- [0]

for dominoes i~i and jj* occurring in 7.

The W-algebra is defined by

WH(g,f) = {v e V¥b) | Qv =0}.
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By a theorem of [V. Kac and M. Wakimoto, 2004]
(also [T. Arakawa 2005]),

there exists a filtration F, W*(g,f) such that

gt WH(a,f) =2 V(g/).
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By a theorem of [V. Kac and M. Wakimoto, 2004]
(also [T. Arakawa 2005]),

there exists a filtration F, W*(g,f) such that
g WH(g,f) = V().

Hence, the W-algebra W¥ (g, f) admits generators associated

with basis elements of the centralizer g’.
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By a theorem of [V. Kac and M. Wakimoto, 2004]
(also [T. Arakawa 2005]),

there exists a filtration F, W*(g,f) such that
g WH(g,f) = V().

Hence, the W-algebra W¥ (g, f) admits generators associated

with basis elements of the centralizer g’.

In the principal nilpotent case, the generator W9 is associated

with the element e;; + ei412 + -+ + eyn—it1 € ¢/

32



Rectangular pyramids
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Rectangular pyramids

Take a pyramid with n rows and [ columns,
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Rectangular pyramids

Take a pyramid with n rows and [ columns,

sothat p, =---=p, =1 are the lengths of the rows

and ¢, = --- = q; = n are the lengths of the columns.
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Rectangular pyramids

Take a pyramid with n rows and [ columns,

sothat p, =---=p, =1 are the lengths of the rows

and ¢, = --- = q; = n are the lengths of the columns.

We have dimg/ = In?.

33



We will use the isomorphism gl; ® gl, = gly such that

enN®E ... ey®FE
[elj]f\:]:1: 9
eNn®E ... eQF

where E = [eaw]} ;-
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We will use the isomorphism gl; ® gl, = gly such that

enN®E ... ey®FE
[elj]f\IIJZIZ )
eNn®E ... eQF

where E = [eaw]} ;-

Explicitly,

€(i—n+a, (j—1)n+b = €ij ® eab-

34



Define the homomorphism from the tensor algebra

T :T(gh[t ")) — EndC" @ U(gly[t ")),
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Define the homomorphism from the tensor algebra

T :T(gh[t ")) — EndC" @ U(gly[t ")),

x—=T(x) = Z eap @ Tap(x)

a,b=1
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Define the homomorphism from the tensor algebra

T :T(gh[t ")) — EndC" @ U(gly[t ")),

x—=T(x) = Z eap @ Tap(x)

a,b=1

by setting for x € gl [t~ !]¢ "

Tab(x) =x®epq € gt ) @ gl, = gly[r 1)t
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Define the homomorphism from the tensor algebra

T :T(gh[t ")) — EndC" @ U(gly[t ")),

x—=T(x) = Z eap @ Tap(x)

a,b=1

by setting for x € gl [t~ ]!
Tab(x) =x®epq € gt ) @ gl, = gly[r 1)t

Hence, for any elements x, y of the tensor algebra,

n

Tan(59) = Y Tae®) Ten(y)-

c=1
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Consider the matrix

OzT+€11[—1]

€1 [—1]

811[—1]

with a =k+ N —n,
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Consider the matrix

-OéT + e [—1]
g: 621[—1]
i 811[—1]

with o = k + N — n, and introduce »”> polynomials in 7, each

of degree [, by setting

612[—1]

0
-1

oaT + 611[—1}

36



Consider the matrix

at + ey [—1] -1 0 ... 0
ex[—1] at +epn[-1] -1 ... 0
E =
—1
en[—1] ern[—1] a7+e,1[—1}_

with o = k + N — n, and introduce »”> polynomials in 7, each

of degree [, by setting

Wap = Tap(cdet €), a,b=1,....n.



Write

Wap = 6, (a7)! + WLEIIJ)(OJT)I_I +-- 4 WCEQ,

and regard Wég) as elements of V¥(b).



Write

Wap = Sp(ar)! + W) (ar) = 4 4 WY,

and regard ngl? as elements of V¥(b).

Theorem [T. Arakawa—A. M., 2014]

The coefficients W) witha,b € {1,...,n}and r=1,...

a

generate the W-algebra W¥*(g,f).

37



The Miura map Vk(b) — VK(I) with [=gl, ® - @ g,

is induced by the projection b — [.
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The Miura map Vk(b) — VK(I) with [=gl, ® - @ g,

is induced by the projection b — [.

Corollary. Under the Miura map we have

T Tap(cdet &) v Tap (@7 + eni[-1) .. (a7 + enl-1]) ).
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The Miura map Vk(b) — VK(I) with [=gl, ® - @ g,
is induced by the projection b — [.
Corollary. Under the Miura map we have

T Tap(cdet &) v Tap (@7 + eni[-1) .. (a7 + enl-1]) ).

By a general result of [N. Genra, 2016] the image of the Miura
map coincides with the intersection of the kernels of screening

operators (k is generic).

38



Classical W-algebras

39



Classical W-algebras

Divide by k each row of the matrix

_06’7'—1—611[—1] -1 0o ... 0 —
ex[—1] at +en[—1] -1 ... 0
—1

I eni1[—1] en2[—1] aT+eNN[—1]_

and set &;[r] = e;j[r] /k.
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Classical W-algebras

Divide by k each row of the matrix

_057'—1—611[—1] —1
621[—1] Oé7'+€22[—1]
i eNl[—l] eNz[—l]

and set ¢;;[r] = ¢;j[r]/k. Since o =k + N — 1, in the limit k — oo

the column-determinant equals

0
-1

at + eyn[—1]

39



Classical W-algebras

Divide by k each row of the matrix

_OéT+€11[—1] -1 0o ... 0 —
ex[—1] at +en[—1] -1 ... 0
—1

I eni1[—1] en2[—1] aT+eNN[—1]_

and set ¢;;[r] = ¢;j[r]/k. Since o =k + N — 1, in the limit k — oo

the column-determinant equals

(t+en[-1])... (1 +evn[-1]).



We thus recover the (classical) Miura transformation

(7‘ +Ell[_1]) e (7‘ —i—?NN[—l]) = + M(I)TN_I + - +u(N)
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We thus recover the (classical) Miura transformation
(’7’ +Ell[_1]) . (7‘ —|—?NN[—1]) = 7_N + u(l)f;—N_l 4+ .+ M(N)

providing generators ") of the classical W-algebra W(gly)

[M. Adler, 1979; I. M. Gelfand and L. A. Dickey, 1978].
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We thus recover the (classical) Miura transformation
(7’ +Ell[_1]) . (7‘ —|—?NN[—1]) = 7‘N + u(l)TN_l 4+ .+ u(N)

providing generators ") of the classical W-algebra W(gly)

[M. Adler, 1979; I. M. Gelfand and L. A. Dickey, 1978].

The elements «) and all their derivatives are algebraically

independent generators of W(gly).

40



At the critical level k = —N the expansion of the
column-determinant yields a different presentation of the

classical W-algebra W(gly).

M



At the critical level k = —N the expansion of the
column-determinant yields a different presentation of the

classical W-algebra W(gly).

Its elements are understood as differential polynomials in the

variables Ej;j := e;[—1] withN > i > j > 1.

M



Expand the column-determinant

cdet

—7 4+ Enq —1 0
E> -1+ E» -1
Eni En» En3

= (=) N+ ()N

+w,

—7+ Enn

42



Expand the column-determinant

—7 4+ Enq —1 0 o ... 0
Er —T4+E» -1 o ... 0
cdet
Eni En»> Eys ... ... —T+Eyn
The elements w(!), ..., w™ together with all their derivatives

are algebraically independent generators of W(gly).

42



By taking the Zhu algebra of WX (gly,f) for a rectangular
pyramid, we recover the generators of

the finite WW-algebra W(gly.f).

[E. Ragoucy and P. Sorba, 1999];

[J. Brundan and A. Kleshchev, 2006].
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Affine Poisson vertex algebra V(g)

Let g be a simple Lie algebra over C and

let X1,...,X,; be abasis of g.
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Affine Poisson vertex algebra V(g)

Let g be a simple Lie algebra over C and
let X1,...,X,; be abasis of g.

Consider the differential algebra V = V(g),

v=cix .. xVr=012.. with x¥=x
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Affine Poisson vertex algebra V(g)

Let g be a simple Lie algebra over C and
let X1,...,X,; be abasis of g.

Consider the differential algebra V = V(g),
v=cix\" ... x"r=012...]
equipped with the derivation 0,
8(X§r)) _ Xi(r-i-l)

1

foralli=1,...,dand r > 0.

with x© = x.

i &

a4



Introduce the A-bracket on V as a linear map

VoV —=CAeV, a®bw— {a,b}.
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Introduce the A-bracket on V as a linear map
VoV —=CAeV, a®bw— {a,b}.
By definition, it is given by

(XoY) =[X, Y]+ (X|Y)A  for X,Yeq,
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Introduce the A-bracket on V as a linear map
VeV —-CAeV, a®bw— {ayb}.
By definition, it is given by
{X,\Y} =X, Y|+ (X|]Y)\ for X,Yeg,
and extended to V by sesquilinearity (a,b € V):

{0axb} = — X {a\b},
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Introduce the A-bracket on V as a linear map
VeV —-CAeV, a®bw— {ayb}.
By definition, it is given by
{X,\Y} =X, Y|+ (X|]Y)\ for X,Yeg,
and extended to V by sesquilinearity (a,b € V):
{Daxb} = — A {axb}.

skewsymmetry {axb} = —{b_r_pa},

45



Introduce the A-bracket on V as a linear map
VeV —-CAeV, a®bw— {ayb}.
By definition, it is given by
{X,\Y} =X, Y|+ (X|]Y)\ for X,Yeg,

and extended to V by sesquilinearity (a,b € V):

{0axb} = —A{axb},
skewsymmetry {axb} = —{b_r_pa},
and the Leibniz rule (a,b,c € V):

{axbc} ={arb}c+ {arc}b.

45



Hamiltonian reduction

46



Hamiltonian reduction

For a triangular decomposition g=n_@&hdn,

set b =n_ @ bh and define the projection

Ty : g — b.
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Hamiltonian reduction

For a triangular decomposition g=n_@&hdn,

set b =n_ @ bh and define the projection
et g — b.

Let f € n_ be a principal nilpotent in g.
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Hamiltonian reduction

For a triangular decomposition g=n_@&hdn,

set b =n_ @ bh and define the projection
et g — b.

Let f € n_ be a principal nilpotent in g.

Define the differential algebra homomorphism

p:V=V(0),  pX)=m(X)+ (fIX),

Xeg.

46



Hamiltonian reduction

For a triangular decomposition g=n_@&hdn,

set b =n_ @ bh and define the projection
et g — b.

Let f € n_ be a principal nilpotent in g.

Define the differential algebra homomorphism
pIV%V(b), p(X):Wb(X)+(f|X)7 Xeg.
The classical W-algebra W(g) is defined by

W(g) ={PeV(b) | p{XAP} =0 forall Xen,}.

46



The classical W-algebra W(g) is a Poisson vertex algebra

equipped with the A-bracket

{a,\b}p:p{a)\b}, a,bEW(g).

47



The classical VW-algebra W(g) is a Poisson vertex algebra

equipped with the A-bracket

{axb}, =plarb},  a,beW(g).

Motivation: integrable Hamiltonian hierarchies
Drinfeld and Sokolov, 1985;
De Sole, Kac and Valeri, 2013-16.
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Generators of W(gly)

Consider gly =spanof {E;|i,j=1,...,N}. Here b isthe

subalgebra of lower triangular matrices.
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Generators of W(gly)

Consider gly =spanof {E;|i,j=1,...,N}. Here b isthe

subalgebra of lower triangular matrices. Set

f=Ey+Exn+---+EynN-1.
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Generators of W(gly)

Consider gly =spanof {E;|i,j=1,...,N}. Here b isthe

subalgebra of lower triangular matrices. Set
f=En+E+---+Eyn_1.
We will work with the algebra V(b) ® C[9],

(r) (N g _ p+h)
OE; —E’0=E/"".

48



Generators of W(gly)

Consider gly =spanof {E;|i,j=1,...,N}. Here b isthe

subalgebra of lower triangular matrices. Set
f=En+Exn+- - +Eyn_1.
We will work with the algebra V(b) ® C[9],
DED — ED g = EUH.
The invariant symmetric bilinear form on gl is defined by
(X|Y) = tr XY, X, Y € gly.

48



Expand the column-determinant with entries in V(b) @ C[d],

-8+E11 1 0 0o ... 0 ]
Er 0+ Ex 1 0o ... 0
cdet
Ev_11 En—12 Ey—13 ... ... 1
2% En» Ens ... ... 8—|—ENN_

=0V +w oV .



Expand the column-determinant with entries in V(b) @ C[d],

0+ Eq 1 0 0 0

Eyy O0+Exn 1 0o ... 0
cdet
En_11 En_12 En—13 ... ... 1
i Ent En»> Ens 8+ENN_

=0V +w oV .
Theorem [M.—Ragoucy, 2015], [De Sole—Kac—Valeri, 2015].

All elements wy, ..., wy belong to W(gly). Moreover,

Wigly) =Cw,....w) | r >0,
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Generators of W(02,+1)

Given a positive integer N =2n,0or N =2n+1seti’ =N —i+ 1.
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Generators of W(02,+1)

Given a positive integer N =2n,0or N =2n+1seti’ =N —i+ 1.

The Lie subalgebra of gl spanned by the elements
Fij=Ej—Epy,  i,j=1,...,N,

is the orthogonal Lie algebra oy.
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Generators of W(02,+1)

Given a positive integer N =2n,0or N =2n+1seti’ =N —i+ 1.

The Lie subalgebra of gl spanned by the elements
Fij=Ej—Epy,  i,j=1,...,N,

is the orthogonal Lie algebra oy.

Cartan subalgebra b = span of {Fji,...,Fu,}.
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Generators of W(02,+1)

Given a positive integer N =2n,0or N =2n+1seti’ =N —i+ 1.

The Lie subalgebra of gl spanned by the elements
Fij=Ej—Epy,  i,j=1,...,N,

is the orthogonal Lie algebra oy.
Cartan subalgebra b = span of {Fji,...,Fu,}.
The subalgebras n and n_ are spanned by F; with i < j and

i > j, respectively, and b =n_ @ h.

50



Generators of W(02,+1)

Given a positive integer N =2n,0or N =2n+1seti’ =N —i+ 1.

The Lie subalgebra of gl spanned by the elements
Fij=Ej—Epy,  i,j=1,...,N,

is the orthogonal Lie algebra oy.
Cartan subalgebra b = span of {Fji,...,Fu,}.
The subalgebras n and n_ are spanned by F; with i < j and

i > j, respectively, and b =n_ @ h.
f=Fn+Fo+ -+ Fopin € 0211

50



Expand the column-determinant of the matrix

0+ Fp

Faq

Fui
Fn+1]

Fyry

Fyry

1

0+ Fyy

Fu2
Fn+12
Fyry

Firy

0+ Fun

Fn+1n

Fn/n+l

Fyrppy

Firpp

0 0 o |
0 0 0
0 0 0
—1 0 0
O+ Fyrpr ... 0 0
O+ Fyrpr —1

F1/2/ 8+F1/11_

51



Expand the column-determinant of the matrix

0+ Fp 1
Fa 0+ Fy
Fui Fu2
Fn+ll Fn+12
Fyry Fyry
Fyr, 0

Lo Fiis

O+ Fun

Fn+1n

as a differential operator

82n+1+W282n_1+W362n_2+-”

Fn/n+l

Fyrppy

Firpp

8+Fn’n’

+ Wonti,

0 0

0 0

0 0

0 0

0 0

8+F2/2/ —1
Fl/2/

w; € V(b)

8+F1/11_
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Theorem [MR]. All elements w;, . .

Moreover,

Wt belong to W(02n+1).

W(oant1) =C [Wgr),wy), . ,wgl) | r=0].
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Theorem [MR]. All elements wy, ..., wy,41 belong to W(o02,41).

Moreover,

W(oant1) =C [wgr),wy), . ’ng) | r=0].

One proof is based on the folding procedure. The subalgebra
02,41 C ghy,, 1 iS considered as the fixed point subalgebra for an

involutive automorphism of gl,, ;.
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Theorem [MR]. All elements wy, ..., wy,41 belong to W(o02,41).

Moreover,

W(oant1) =C [wgr),wy), . ’ng) | r=0].

One proof is based on the folding procedure. The subalgebra
02,41 C ghy,, 1 iS considered as the fixed point subalgebra for an
involutive automorphism of gl,, . ;. For the principal nilpotent we

have
fef=En+En+ -+ Enin—Eonet — — Exugion.

52



Generators of W(sp,,)
The Lie subalgebra of gl,, spanned by the elements
Fi‘:Eij—EiEjE'/'/ i7j:1,...72l’l,

j'i’y

is the symplectic Lie algebra sp,,, where

g=1fori=1,....,n and ¢;=—1 for i=n+1,...
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Generators of W(sp,,)
The Lie subalgebra of gl,, spanned by the elements
Fi‘:Eij—EiEjE'/'/ i7j:1,...72l’l,

j'i’y

is the symplectic Lie algebra sp,,, where

g=1fori=1,....,n and ¢;=—1 for i=n+1,...

Cartan subalgebra h = span of {Fj1,...,Fu,}.
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Generators of W(sp,,)
The Lie subalgebra of gl,, spanned by the elements
Fi‘:Eij—EiEjE'/'/ i7j:1,...72l’l,

j'i’y

is the symplectic Lie algebra sp,,, where
gg=1fori=1,....n and ¢;,=—1 for i=n+1,...,2n

Cartan subalgebra h = span of {Fj1,...,Fu,}.

1
f:le+F32+"'+an—1+§Fn’n € 5Py,
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Expand the column-determinant of the matrix

0+ Fii

Faq

Fui

Fyry

Fyry

Firy

1
0+ Fy

Fu2

Fyry

Fyry

Firy

0+ Fun

Fyry

Fyry

Firy

1
6+Fnl’ll

FZ/n’

Fl’n’

0 0 0o |
0 0 0
0 0 0
~1 0 0
O+ Fyrqp/ —1

Firor 8+F1/1/_
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Expand the column-determinant of the matrix

0+ Fiy 1 0 0 0 0 0
Fy O+ Fyp ... 0 0 0 0 0
F, F,o O+ Fun 1 0 0 0
F,ry F,ry F,r, O+ F,r, —1 0 0
Fyry Fyry Fyry Fyrpr O+ Fyrqp/ —1

L Firy Firy Fy, Firyr Firor 8+F1/|/_

as a differential operator

DM 4wy 0 2 w30 4w, w € V(b).



Theorem [MR]. All elements w,, ..

Moreover,

W(sp,,) =C [wg), wftr), e

., wy, belong to W(sp,,).

wy) | r>0].

55



Theorem [MR]. All elements wy, ..., wy, belong to W(sp,,).

Moreover,

W(sp,,) =C [wgr),wir), .. ,wé;) | r=0].

This can be proved by using the folding procedure for the

subalgebra sp,, C gl,,,.
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Theorem [MR]. All elements wy, ..., wy, belong to W(sp,,).

Moreover,

W(sp,,) =C [wgr),wgr), . ,wéz) | r> O].

This can be proved by using the folding procedure for the

subalgebra sp,, C gl,,. For the principal nilpotent we have

f»—>J7=E21 +E3o+ -+ Eppin — Enpont1r — - — Ezpon-1-
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Generators of W(0,,)

Introduce the algebra of pseudo-differential operators

V(b) @ C((071),

-1 () _ = s p(r+s) g—s—1
o' F) = (1P F o
s=0

56



Generators of W(0,,)

Introduce the algebra of pseudo-differential operators
V(b) @ C((071)),
o7 FD =S (1 ET o
s=0

Take the principal nilpotent element f € 05, in the form

f=Fu+Fa+-+Fuy1+Fyu.

56



Remark. Under the embedding o2, C gl,,, f > f,

f is not a principal nilpotent in gl,,,:
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Remark. Under the embedding o2, C gl,,, f > f,

f is not a principal nilpotent in gl,,,:

&N
I

S o o o

S o o o

oS o o o

S o o o

S o o o

S o o o
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Expand the column-determinant of the (2n+ 1) x (2rn+ 1) matrix

0+ Fp

Frq

Fu1 — Fury
0

Fyry

Fyry

O+ Fas

Fuy — Fpp

0

Fyro

Firo

—20
0
8+Fn/n/

Fyry —Fory

Fyry —Fyry

6+F2/2/

Fl’Z’

6+F1/11_
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Expand the column-determinant of the (2n+ 1) x (2rn+ 1) matrix

[0+ Fy, 1 0 0

Frq O+ Fas 0 0

Fyi—Fyy Fypp—Fpoy ... O+ Fun 0
0 0 0 9!

F,r F,ry 0 0

Fyr 0 0

0 Fiis 0

as a pseudo-differential operator

O ws 023 s 9

0 0 0

0 0 0

—20 0 0

0 0 0

O+ Fyryr 0 0

Fyryr —Fyry oo O+ Foros —1
Fuopy—Fu, ... Firar 6+Fl/1/_
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Theorem [MR]. All elements w;, ws, ..

W(02,). Moreover,

(r) ()

.,wa,—1 and y, belong to

W(o2n) = Clw;’,w, ,...,wgl)_z,y,(,r) | r=0].

59



Theorem [MR]. All elements w;, ws, ..

W(02,). Moreover,

We have

yp = cdet

W(02n> =C [

0+ Fqy

Fr

Fn_11

Fnl_Fn’l

(r) ()

(0

Wy Wy e Wy, 5y Yn
1 0
0+ Fx» 1
Fu_12 Fu13
FnZ_Fn’Z Fn3_Fn’3

| r=0].

.,wa,—1 and y, belong to

0+ Fun)
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Chevalley-type theorem
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Chevalley-type theorem

Let
¢ :V(b) = V(b)

denote the homomorphism of differential algebras defined on

the generators as the projection b — b with the kernel n_.
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Chevalley-type theorem

Let
¢ :V(b) = V(b)

denote the homomorphism of differential algebras defined on

the generators as the projection b — b with the kernel n_.
The restriction of ¢ to W(g) is injective. The embedding

¢ : W(g) = V(b)

is known as the Miura transformation.

60



For g = gly, the image of the column-determinant

cdet

0+ Eq 1 0

Er 0+ Exn 1

En_11  En—12 Ey_13

Eni En> En3

0
0

0+ Enn |

61



For g = gly, the image of the column-determinant

5+Eu 1 0 0o ... 0 ]
Ey 0+ Enx 1 0 ... 0
cdet
En_11 En—12 Ey—13 ... ... 1
i En Eny Eys ... ... 8—|—ENN_
equals

(8+Ell)'-‘(a+ENN):aN+WlaN_l+--~—|—wN_



For g = gly, the image of the column-determinant

0+ Eq 1 0 0 0

Ey  O+Ep 1 0 ... 0
cdet
EN,“ EN712 EN713 1
i Eni Eno Ens 8—|—ENN_
equals

(8+E11)..‘(8+ENN) = 8N+wlaN_1 + 4wy
Therefore, we recover the Adler—Gelfand—Dickey generators:
W(aly) = C[w', ... oW | r>0].
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Drinfeld—Sokolov generators for 0, 1:
(8—|—F11)...(6+an)a(6—an) (6 F )
e — ']

:8271-1—1 Tw 82n—1
2 +w3 ¥ 4.
3 + o Wopa,

62



Drinfeld—Sokolov generators for 0, 1:
(8—1—F11)...(6—|—an)8(6—an)...(6—F11)

:82n+1+W282n_1—|—W382n_2—|—---—|—w2n+1’

W(oan+1) =C [wgr),wy), ) 0].
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Drinfeld—Sokolov generators for 0, 1:
(8—1—F11)...(6—|—an)8(6—an)...(6—F11)
=02 w02 w0 e g,
W(o2u4+1) =C [wgr),wy), . ,wg;) | r=>0].
Drinfeld—Sokolov generators for sp,,:

(O+F11)...(0+Fnp) (0—Fpp)...(0—Fn1)

:82n+W282n72+W382n73_|_”'+W2m
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Drinfeld—Sokolov generators for 0, 1:
(8—1—F11)...(6—|—an)8(6—an)...(6—F11)
=02 w02 w0 e g,
W(o2u4+1) =C [wgr),wy), . 7Wg1) | r=>0].
Drinfeld—Sokolov generators for sp,,:

(O+F11)...(0+Fnp) (0—Fpp)...(0—Fn1)

:82n+W282n72+W382n73_|_”'+W2m

W(sp,,) =C [w(zr),wy), . ,wgl) | r=0].
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Drinfeld—Sokolov generators for 0y,:

(8+F11)...(8+an)8_1 (a—an)...(ﬁ—F“)

=0 w0 w307 o + (1) 0 Ly
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Drinfeld—Sokolov generators for 0y,:

O+ F11)...(0+Fu,) 07 (0= Fpp) ... (0 —Fyy)

=0 w0 w307 o + (1) 0 Ly

In particular,

ya= (04 Fi1)...(0+ Fun) 1.
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Drinfeld—Sokolov generators for 0y,:

O+ F11)...(0+Fu,) 07 (0= Fpp) ... (0 —Fyy)

=0 4w 0P w0 b wa (-
In particular,

Vn = (8+F11)(8+an) L.
Then

1)nyn a_l Yn-

W(oy,) =C [wg),wf{), wén) 2,y,(1r)’ = 0]-
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