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Plan of lectures

» Casimir elements for the classical Lie algebras from

the Schur—Weyl duality.
» Affine Kac-Moody algebras: center at the critical level.

» Affine Harish-Chandra isomorphism and

classical W-algebras.
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Symmetric group &,,

Let &,, denote the group of permutations of the set {1, ...

Let 5., denote the transposition (a, b) for a < b.

The symmetrizer is the element

1

’ s€ES,

The anti-symmetrizer is the element

1
a™ = ) Z sgns-s € C[G,).

" s€G,

,m}.
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Fusion formulas

Theorem [Jucys 1966].

The following factorization formulas hold:

s I 0052)

" 1<a<b<m

C1<a<b<m

where both products are taken in the lexicographical order on

the set of pairs (a, b).
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Action of G,, in tensors

The symmetric group &,, acts in the tensor space

CVe...oCV
| ——

m

by the rule

Sab F> Pap, 1<a<b<m,

where P, is the permutation operator

N
P,y = Z 191 g eij ® 1®0—a—1) & ¢ji ® 1&(m—b)
ij=1

and ¢;; € End C" are the matrix units.
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The symmetrizer and anti-symmetrizer act as the operators

w1 (1 )

m! b—a
1<a<b<m

and

e T

’ 1<a<b<m

which we regard as elements of the algebra

End (CY)®" =~ EndC" ® ... ® EndC" .

m
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Lie algebra gl

We let E;; be the standard basis elements of glj.

The universal enveloping algebra U(gly) is the associative
algebra generated by the N? elements E;; subject to the defining
relations

EjEy — EqEj = 6,;Eq — 6;En.
We will combine the generators into the matrix E = [E;] which

will also be regarded as the element
N
E=e;® Ej; € EndC" @ U(gly).
ij=1
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Consider the algebra

EndC" @ ... ® EndC" ® U(gly)

m

and for a =1,...,m introduce its elements by

N

Z @ @ ey @199 @ By,
Note the property P,,E, = E, P,p.

Key Lemma. The defining relations of U(gly) are equivalent

to the single relation

E\E, — E>E, = (E| — Ep) Ppa.
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The trace is the linear map EndC" — C

defined by tr: e; — 0.
The partial trace tr, acts on the a-th copy of EndC" in

EndC" @ ... @ EndCY ® U(gly).

m

Theorem. Forany s e C[S,,] and uy,...,u, € C the element
tI.1,...,m S (ul + El) s (um + Em)

belongs to the center Z(gly) of U(gly).
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Proof. Consider the tensor product

End C" ® End (CM)®™ @ U(gly)

with the copies of the algebra End C" labelled by 0,1, . ..

We will show that
[Eo,try Sy +Er) ... (um + En)] = 0.
By the Key Lemma,
[Eo, ua + Eq] = Poa(ta + Ea) — (4a + Eq)Poas

where we used the relations P,, E, = E,P,;.
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m
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Hence
[Eo,S (u1 + Ev) ... (um + Ep)]

m
=8> Poa(ur+Er) ... (tn + En)

a=1

_S(ul +El)---(um+Em)ZP0aa

a=1

because EyS = SE, and Py, commutes with E, for b # a.

The sum of the permutation operators Py, commutes with §

(the Schur—Weyl duality). Applying the trace tr; _, and using

m

its cyclic property we get 0. O
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Example: Capelli determinant.

Take m = N and introduce the Capelli determinant by
Clu)=tr; yANM (u+E)...(u+Ey—N+1).

Then C(u) coincides with the column-determinant

u—+ Eq Ep Ce En
E> u+E»—1 ... E>n
C(u) = cdet
Enp Eno ... u+Eyw—N+1

All coefficients of the polynomial C(u) are Casimir elements.
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Indeed, observe that by the Key Lemma

Pab
(1—b_a)(u+Ea—a+1)(u+Eh—b+1)

. Pap

= (u+Ep b+1)(u+Ea—a—|—1)<1—b_a).
Hence, the fusion formula for AY) gives
AN (u+Ey) .. (u+Ey—N+1) = (u+Ey—N+1) ... (u+E ) AN

and that this equals A™) C(u).

It remains to note that tr; AN =1.
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Example: Gelfand invariants.
Take s = (mm —1 ... 1) in the Theorem. Then
S=Pu_1m...Pr3P13.
We get the Casimir elements (Gelfand invariants):
try waSEL...Ey=tE"
For instance, for m = 2 we get

trl’zPlz E\E, = tr172 E,PrE, = tl‘E2

because try P15 = 1.
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The Newton identity

Theorem [Perelomov—Popov, 1966].
We have the identity

" E™ Clu+1
1+Z bexl)

m+1 - C(u)

Proof. Verify

NAM U+ E) . (u+Eyy —N+2)(u+Ey+1)=Clu+1).

.....



The Newton identity

Theorem [Perelomov—Popov, 1966].

We have the identity

m+1 - C(M)

.....

tr, NAM (u+E) .. (u+Ey_1 —N+2)(u+Ey+1)=Clu+1).

NA(N) (u—}—El)...(u—l—EN,l —N+2)

.....

NAM Cu) (u+Ey —N+1)"!

.....
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Harish-Chandra isomorphism

Given an N-tuple of complex numbers A = (A, ..., \y), the
corresponding irreducible highest weight representation L()\) of
the Lie algebra gl is generated by a nonzero vector £ € L()\)

(the highest vector) such that

E;j(=0 for 1<i<j<N, and

E,','f:)\,'g for 1<i<N.
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Any element z € Z(gly) acts in L(\) by multiplying each vector
by a scalar x(z).

When regarded as a function of the highest weight, x(z) is a
symmetric polynomial in the variables [y, . .., Iy, where
Li=XN—i+1.

The mapping z — x(z) defines an algebra isomorphism
X Z(gly) = Clly, ..., Iy]%"

known as the Harish-Chandra isomorphism.
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Consider the standard triangular decomposition
gy =n_®hdng.
Then y can also be defined as the restriction to Z(gly) of the

Harish-Chandra homomorphism

U(gly)" — U(h)

which is the projection of the h-centralizer U(gl)" with respect

to the direct sum decomposition

Ulghy)? = U(h) @ (U(aly)” N U(gly)n- )
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Example. Under the Harish-Chandra isomorphism we have
X:C(M)'—)(M—i-h)...(u—i—l;v), L=E;—i+1.
This is immediate from the definition

CW%:2:%mawu+mdm.“w+E—N+1%MM
ceGy
By the Newton formula, the Harish-Chandra images of the
Gelfand invariants are found by

N
(=D)"x(cE™) u+1l+1
1 = —_—
+Z u—N—l— m+l zl_[l u—l—li

m=0
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Let g be a simple Lie algebra of ranknand g=n_&hdn,.

We have the direct sum decomposition
U(g)" = U(h) @ (U(g)” a U(Q)n+)
and the Harish-Chandra isomorphism
x:Z(g) — U)Y,  with a shifted action of W.

We have
Z(g) :C[Plv"'apn]v

for certain algebraically independent invariants Py, ..., P,

whose degrees dy, . . ., d, are the exponents of g increased by 1.
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Brauer algebra B,,(w)

Multiplication of m-diagrams (m = 8):

1 2 3 4 5 6 7 8

1 2 3 4 65 6 7 8

= W I
& 7 T v
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The dimension of the Brauer algebra 5,,(w) is (2m — 1)!!.

For 1 < a < b < mdenote by s,, and g,; the diagrams

| BT ] and i e

The symmetrizer in  B,,(w) is the idempotent s such that

sgp s = s g = glm) and gab sm) — g(m) gap = 0.



Explicitly,
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where D) ¢ B,,(w) denotes the set of diagrams which have
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Explicitly,
Lm/2] —1
1 w/2+m—2
(m) _ 1)
e e () s
r=0 deD(r)
where D) ¢ B,,(w) denotes the set of diagrams which have
exactly r horizontal edges in the top. Also,
(m) _ H 1 — 8ab (m)
S )
1<a<b<m( w+a+b_3)

and

1 S
(m):7 (1 ab _ 8ab )
g m! H Ry w/2+b—a—-1/

" 1<a<b<m

where the products are in the lexicographic order.
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Brauer—Schur—Weyl duality

There are commuting actions of the classical groups
in types B, C or D and the Brauer algebra with a specialized

parameter w on the tensor product space

CV®...oCVN.
|

The dual pairs are
(Bm(N)’ ON)
and

(Bu(—=N), Spy) with N =2n.
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Action in tensors

Inthe case g = oy set w = N. The generators of 5,(N) act

in the tensor space

CVg...oCVN
| ———
m
by the rule
sabHPaba gab'_>QaI% 1<a<b§m,
where i"=N—-i+1 and

N
Oup = Z 1®(a=1) ® e ® 1®(b—a=1) ® eirjr @ 1®(m=b)
ij=1



In the case g =spy with N =2n set w = —N. The

generators of B, (—N) act in the tensor space (CY)®" by

Sap +r —Pap, 8ab + —Qub, I<a<b<m,



In the case g =spy with N =2n set w = —N. The

generators of B, (—N) act in the tensor space (CY)®" by
Sap +r —Pap, 8ab = —Quab, I<a<b<m,
with ¢, = —¢,.;, =1 for i=1,...,n and
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In the case g =spy with N =2n set w = —N. The

generators of B, (—N) act in the tensor space (CY)®" by
Sap +r —Pap, 8ab + —Qub, I<a<b<m,
with ¢, = —¢,.;, =1 for i=1,...,n and

N
Oup = Z Eigj 1®(a71) R e ® 1®(b7a71) ® ejrjr ® 1®(mfb)'
ij=1

In both cases denote by S the image of the symmetrizer s(")

under the action in tensors,

$M c EndC’ ® ... ® EndCV .

m
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Explicitly, in the orthogonal case

m) __ Pd) Qd;
3 )_ﬁ 11 (1+b—a_N/2+b—a—1)’

1<a<b<m

and in the symplectic case

S(m):mi H (1_ Pap OQab >

1<a<b<m b—a n-bta+l

Remark. S*+D =0 for g = sp,,. Consider ~,,(—2n)S"),

wm—2 N for g=oyn

7m(w):w—i—Zm—Z’ W=

—2n for g=sp,,.
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Lie algebras o, and spy

Let g=oy, spy With N=2n or N=2n+1.
Set

Fij:Eij_Ej’i/ or F,'j:Eij—EiEjEj/i/,

respectively.
Introduce the N x N matrix F = [Fj|

N
F = Z ejj @ Fjj € EndCV ® U(g).
ij=1
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Theorem. Forany s € B, (w) with w = £N

and uy,...,u, € C the element
trl,...,mS(ul + F]) ... (um + Fm)
belongs to the center Z(g) of U(g).

In particular, there are analogues of the Capelli determinant

and Gelfand invariants.

A version of the Newton identity also holds.
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Proof of the theorem relies on the matrix form of the defining

relations for U(g):
FiF, — F,F; = (P12 — Q12) F2 — F2 (P12 — Q12)

where both sides are regarded as elements of the algebra

EndC" @ End CY ® U(g) and

N N
F1:Zeij®1®F,'j, F2:ZI®€,'J'®F,'J'.
ij=1 ij=1
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Theorem. For g = oy the image of the Casimir element
Yo (N) tr SO (Fy — k) ... (Foy + k— 1)
under the Harish-Chandra isomorphism is given by

S (B =G —1/22) (B = G+ k—3/2)7),
1< 1< <Grsn
where [;=F;+n—i+1/2 inthecase N =2n+1; and
S B =G -0 (6= etk —2)7),
1< <k

where [; = F; +n —i inthe case N = 2n.



Theorem. For gy = sp,, the image of the Casimir element
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Theorem. For gy = sp,, the image of the Casimir element
’ka(—Zn) tI'S(Zk) (F1 + k) R (FZk —k+ l)

under the Harish-Chandra isomorphism is given by

F S B R (B - G-kt 1)),

I 1< <jg<n

where [ =F;+n—i+1 for i=1,... n.
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In particular, there is a linear basis of Z(gly) formed by the
quantum immanants Sy with A running over partitions with at
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More constructions of Casimir elements for the Lie algebras

gly, oy and sp,, are known.

In particular, there is a linear basis of Z(gly) formed by the
quantum immanants Sy with A running over partitions with at

most N parts (Okounkov—Olshanski, 1996, 1998).

The Harish-Chandra images x(S ) are

the shifted Schur polynomials.
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Affine Kac—-Moody algebras

Define an invariant bilinear form on a simple Lie algebra g,
1
(X,Y) = o™ tr(adXadY),

where 4V is the dual Coxeter number.

For the classical types, (X,Y) = const-trXY,

N for g=sly, const = 1

h = N-=-2 for g = oy, const:%

n+1 for g=sp,,, const = 1.
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g=glt.r ' JeCK
with the commutation relations
(X[, Y[s]] = X, Y][r+s] +ré, (X, Y)K,

where X[r] = Xt"forany X e gand r € Z.



The affine Kac—Moody algebra g is the central extension
g=gltt'|oCK
with the commutation relations
(X[, Y[s]] = X, Y][r+s] +ré, (X, Y)K,

where X[r] = Xt"forany X e gand r € Z.

Problem: What are Casimir elements for g?



The universal enveloping algebra at the critical level U_,v(g) is

the quotient of U(g) by the ideal generated by K + h".



The universal enveloping algebra at the critical level U_,v(g) is

the quotient of U(g) by the ideal generated by K + h".

By [Kac 1974], the canonical quadratic Casimir element
belongs to a completion U_,v(g) of U_,v(g) with respect to the

left ideals I, m > 0, generated by 7" g[t].



Let Z(g) be the center of the completed algebra U_,v(3).
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Let Z(g) be the center of the completed algebra U_,v(3).

Known results:

» Algebraic structure of Z(g).

» Explicit generators for classical types A, B, C, D.
Questions:

» Extension to Lie superalgebras.

» Extension to quantum affine algebras.



Example: g = gly. Defining relations for U(EIN):

Ejj[r] Euls] — Eul(s] Ej[r]

= 0y Eit[r + 5] — 6,1 Exglr +s] + 10, <5kj5i1 TN )K-



Example: g = gly. Defining relations for U(EIN):

Ejj[r] Euls] — Eul(s] Ej[r]

= 5kjE,~l[r+ s| — 0; Exjlr +s] + 16, _ <5kj5il — N ) K.

The critical level is K = —N.



Example: g = gly. Defining relations for U(EIN):

Ejj[r] Euls] — Eul(s] Ej[r]

6;i O
:5kjEj][r+S]—61-1Ekj[r+s]+r(sr_s <5kj5il_ )K
’ N
The critical level is K = —N.

For all r € Z the sums

are Casimir elements.



For r € Z set



For r € Z set

C, = XN: (D Elsl Bl = 5]+ 3 Exlr — 5] Eyls]).

ij=1 5<0 520

All C, are Casimir elements at the critical level, they belong to

the completed universal enveloping algebra U_y(gly).



Introduce the (formal) Laurent series

Ej(z) =) Ejlz !

rez



Introduce the (formal) Laurent series

Ej() =3 Byl

rez

and use the notation

Ej(z)y =Y Ejlrlz ™", Ejx)_ =) Egrlz"".

r<0



Introduce the (formal) Laurent series
Ej(e) =) Ejlla"
rez
and use the notation
Ej(@)y = D Bl Ey(). =) Bl
r<0 r=0
Given two Laurent series a(z) and b(z),

their normally ordered product is defined by

1a(2)b(z) : = a(z)+ b(z) + b(z) alz)-.



Note

> = 3 (Eila) o Eil2) + Ea(E () ).

reZ iy=1



Note

> = 3 (Eila) o Eil2) + Ea(E () ).

rez ij=1

Hence, all coefficients of the series
N
tr: E(Z)2 D= Z :Eij(Z)Eji(Z) :
ij=1

are Casimir elements.



Similarly, all coefficients of the series

N

tr:E(z)?: = Z t Eij(2) Ej(2) Er(2)

ijk=1
are Casimir elements, where the normal ordering is applied

from right to left.



Similarly, all coefficients of the series

N
tr:E(z)*: = Z : Eij(z) Ejr(2) Eri(2)
ijk=1

are Casimir elements, where the normal ordering is applied

from right to left.

However, the claim does not extend to tr: E(z)* : !



Similarly, all coefficients of the series

N

tr:E(z)?: = Z t Eij(2) Ej(2) Er(2)

ijk=1
are Casimir elements, where the normal ordering is applied

from right to left.
However, the claim does not extend to tr: E(z)* : !

Correction term: all coefficients of the series
tr:E(z)*: — tr: (8ZE(z))2 :

are Casimir elements.



Invariants of the vacuum module



Invariants of the vacuum module

The vacuum module at the critical level is the g-module
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The vacuum module at the critical level is the g-module
V(g) = U_pv(9)/U—pv(9) glr].
The Feigin—Frenkel center 3(g) is the algebra of g[f]-invariants

3(g) = {ve V(g) | glr]v = 0}.

Note V(g) = U(r'g[r""]) as a vector space.



Invariants of the vacuum module

The vacuum module at the critical level is the g-module
V(g) = U_n(g)/U—pv(a)glt].

The Feigin—Frenkel center 3(g) is the algebra of g[f]-invariants
3(@) ={ve V() | glt]v =0}

Note V(g) = U(r'g[r""]) as a vector space.

Hence, ;(g) is asubalgebraof U(:'g[t']).



Properties:

» The subalgebra 3(g) of U(r'g[r"!]) is commutative.
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» It is invariant with respect to the translation operator T

defined as the derivation T = —d/dr.



Properties:

» The subalgebra 3(g) of U(r'g[r"!]) is commutative.

» It is invariant with respect to the translation operator T

defined as the derivation T = —d/dr.

Any element of 3(g) is called a Segal-Sugawara vector.
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n =rankg, such that
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Theorem (Feigin—Frenkel, 1992, Frenkel, 2007).
There exist Segal-Sugawara vectors Si,...,S, € U(r'g[r']),

n =rankg, such that
3@ =C[TrSi [ 1=1,....n, k=0

We call Sy, ..., S, a complete set of Segal-Sugawara vectors.



Theorem (Feigin—Frenkel, 1992, Frenkel, 2007).
There exist Segal-Sugawara vectors Si,...,S, € U(r'g[r']),

n =rankg, such that

o~

3@ =C[T'S;|I=1,....,n, k>0

We call Sy, ..., S, a complete set of Segal-Sugawara vectors.

Explicit constructions of such sets and a new proof of
the theorem for the classical types A, B, C, D:

[Chervov-Talalaev, 2006, Chervov—M., 2009, M. 2013].



Example: g = gly.



Example: g = gly.
Set 7= —d/dr and consider the N x N matrix

T—I—Ell[—l] Elz[—l] ElN[—l]

e E[-1] = Ey[-1] T+ Exn[-1] ... Eon[—1]

Eni [—1] ENz[—l] . T+ ENN[—I]




The coefficients ¢y, . .., ¢n of the polynomial
cdet(t +E[-1]) =™+ 17V + ot ovi T+ o

form a complete set of Segal-Sugawara vectors.



The coefficients ¢y, . .., ¢n of the polynomial
cdet(t +E[-1]) =™+ 17V + ot ovi T+ o

form a complete set of Segal-Sugawara vectors.
ForN =2
cdet(r + E[—1]) = (7 + En[-1]) (7 + Ex[-1]) — Exi[-1]Epp[—1]

:T2+¢1T+¢2



The coefficients ¢y, . .., ¢n of the polynomial
cdet(t +E[-1]) =™+ 17V + ot ovi T+ o

form a complete set of Segal-Sugawara vectors.
ForN =2
cdet(r + E[—1]) = (7 + En[—1]) (7 + Ex[—1]) — Exi[-1]E12[—1]
=+ 7+ b
with
¢1 = En[—1] + Ex[-1],

¢ = En|[—1] Exa[—1] — Exy1[—1] E1a[—1] + Exn[-2].



To get another family of Segal-Sugawara vectors, expand

tr (T+E[_1])m = QmOTm + O Tmil + - 4 Oum



To get another family of Segal-Sugawara vectors, expand
tr (T + E[_l])m = Omo ™+ Om1 Tmil + - 4 Oum

All coefficients 6,,; belong to the Feigin—Frenkel center 3(§[N).



To get another family of Segal-Sugawara vectors, expand
tr (T + E[_l])m = 9mO " + 9m1 Tmil 4+ emm
All coefficients 6,,; belong to the Feigin—Frenkel center 3(§[N).

The elements 6,4, ...,60yy form

a complete set of Segal-Sugawara vectors.



To get another family of Segal-Sugawara vectors, expand
tr (T + E[_l])m = 9mO " + 9m1 Tmil 4+ emm
All coefficients 6,,; belong to the Feigin—Frenkel center 3(§[N).

The elements 6,4, ...,60yy form

a complete set of Segal-Sugawara vectors.
The following are Segal-Sugawara vectors for gl :

tr E[—1], tr E[—1]?, tr E[—1)%, tr E[—1]* — r E[-2)*.



The corresponding central elements in ﬁ_N(gT[N) are recovered
by the state-field correspondence map Y which takes

elements of the vacuum module V(gly) to Laurent series in z;



The corresponding central elements in ﬁ_N(gT[N) are recovered
by the state-field correspondence map Y which takes

elements of the vacuum module V(gly) to Laurent series in z;

its application to Segal-Sugawara vectors yields Laurent series

whose coefficients are Casimir elements.



The corresponding central elements in ﬁ_N(gT[N) are recovered
by the state-field correspondence map Y which takes

elements of the vacuum module V(gly) to Laurent series in z;

its application to Segal-Sugawara vectors yields Laurent series

whose coefficients are Casimir elements.
By definition,

Y Ey[—1] = Ejz) = Y Byl



Also,



Also,

and



Also,

Vi1l O, r >0
and
Y : Ej[—1]Ey[—1] — : E;j(2) Eu(2) :
We have
Y:twE[-1] — trE(z)
Y:trE[—1]? —tr: E(z)*:
Y twE[-1P —tr: E(z)?:

YitwE[-1* —wE[-2 =t E()*: — tr: (0,E(z))



Write

tr: (9. + E(z))m D= 0,02 0"+ + 0,,,(2).



Write

tr: (0. + E(z))m D= 0,02 0"+ + 0,,,(2).

Theorem. The coefficients of the Laurent series

011(2),---,0yn(2)

are topological generators of the center of ﬁ—N(é\[N).



Write

tr: (82 + E(z))m =002 0"+ +6,,,(2).

Theorem. The coefficients of the Laurent series
911(2), s 76NN<Z)
are topological generators of the center of U_y(gly).

Remark. The theorem holds in the same form for any complete

set of Segal-Sugawara vectors.



Proving the Feigin—Frenkel theorem for the classical types:



Proving the Feigin—Frenkel theorem for the classical types:
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Proving the Feigin—Frenkel theorem for the classical types:
» Produce Segal-Sugawara vectors Sy, ..., S, explicitly.

» Show that all elements TS, with/=1,...,nand k > 0 are

algebraically independent and generate 3(g).



Proving the Feigin—Frenkel theorem for the classical types:
» Produce Segal-Sugawara vectors Sy, ..., S, explicitly.

» Show that all elements TS, with/=1,...,nand k > 0 are

algebraically independent and generate 3(g).

Use the classical limit:

grU(t gl 1)) = S(e gt 1)



Proving the Feigin—Frenkel theorem for the classical types:
» Produce Segal-Sugawara vectors Sy, ..., S, explicitly.

» Show that all elements TS, with/=1,...,nand k > 0 are

algebraically independent and generate 3(g).

Use the classical limit:
grU(rlglr™']) = s(r'glr])

which yields a g[r]-module structure on the symmetric algebra

S(r"ale™"]) = S(gle.")/aln).



Let Xi,...,X; beabasisofgandlet P=P(X,...,X,;) bea

g-invariant in the symmetric algebra S(g).



Let Xi,...,X; beabasisofgandlet P=P(X,...,X,;) bea

g-invariant in the symmetric algebra S(g). Then each element
Py =T P(Xi[—1],...,Xq[—1]), r>0,

isa g[t]-invariant in the symmetric algebra S(r~'g[r™1]).



Let Xi,...,X; beabasisofgandlet P=P(X,...,X,;) bea

g-invariant in the symmetric algebra S(g). Then each element
Py =T P(Xi[—1],...,Xq[—1]), r>0,
isa g[t]-invariant in the symmetric algebra S(r~'g[r™1]).

Theorem (Rais—Tauvel 1992, Beilinson—Drinfeld 1997).
If Py,..., P, are algebraically independent generators of S(g)¥,
then the elements Py (,, ..., P, () With r > 0 are algebraically

independent generators of S(t_lg[t_l])gm.



Explicit generators of 3(g). Type A



Explicit generators of 3(g). Type A
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Explicit generators of 3(g). Type A
Set Ejlr) = E;jt" € gly[t, ']

and

N
Elr] = Z ej ® Ey[r] € EndCY @ U(gly[t,t7"]).
ij—1



Explicit generators of 3(g). Type A

Set Ejlr] = E;t" € gly[t, til]

and
N
Elrf] = e;® Ej[r] € EndCY @ U(gly[t,r"]).
ij=1

Consider the algebra

EndC"®...® EndC" @ U(gly[t,r'])

m



Explicit generators of 3(g). Type A

Set E;jlr] = E;t" € gly[t, 1

and
N
Elrf] = e;® Ej[r] € EndCY @ U(gly[t,r"]).
ij=1

Consider the algebra

EndC" ®...® EndC" ® U(glylr, t_l])

m

and recall its elements H™ and A(™)



Theorem. All coefficients of the polynomials in 7 = —d/dt



Theorem. All coefficients of the polynomials in 7 = —d/dt

tl‘17__.7mA(m) (T + E[—l]l) .. .(7' + E[_l]m)

:¢m07m+¢m17'm_1 ++¢mm7

1, H™ (7 + E[~1)1) .. .(7 + E[~1]n)

= meTm"‘wmle_l o s

and

tr(T—i-E[—l])m = Hm()Tm"i‘eml Tmil + - 4 Oum



Theorem. All coefficients of the polynomials in 7 = —d/dt

tl‘17._.7mA(m) (T + E[—l]l) .. .(7' + E[_l]m)

= ¢m07_m + ¢ml 7_m—1 +oeee ¢mm7

1, ..m H™ (7’ + E[—1]1) o -(T + E[—l]m)

- meTm_'_wmle_l +oe +wmm’

and

tr (7 +E[—1])" = 0o ™ 4 01 7"+ -+ O

belong to the Feigin—Frenkel center 3(gly ).



Proof. Use the matrix form of the defining relations of U_N(EIN):



Proof. Use the matrix form of the defining relations of U_N(EIN):

Forany r € Z set

N
El] = Y ey ® Eylr] € EndCY © U_y(gly).
ij=1



Proof. Use the matrix form of the defining relations of U_N(EIN):

Forany r € Z set

N
El] = Y ey ® Eylr] € EndCY © U_y(gly).
ij=1

The defining relations can be written in the form

E[r]1 E[s], — E[s]» E[r];

= (E[r+s|1 —E[r+sl2) Pa+r6, (1= NPp).



The required relations in the vacuum module are

E[0Jotr, _wA™ (7 +E[~1]1) ... (T + E[-1],) =0



The required relations in the vacuum module are
and

n A (7 +E[~1]1) ... (T + E[~1],) = 0.

.....



The required relations in the vacuum module are
E[0Jotr, _wA™ (7 +E[~1]1) ... (T + E[-1],) =0
and

E[lotry, A" (7 + E[~1]1) ... (T + E[~1],) = 0.

The elements v,,, and 6,,, are expressed interms of the
oma through the MacMahon Master Theorem and the Newton

identities, respectively.



The coefficients of the column-determinant are related to the

oma through the relation

cdet(r + E[-1]) = tr; _yAN (7 + E[-1]1) ... (1 + E[-1]y).



The coefficients of the column-determinant are related to the

oma through the relation

cdet(r + E[-1]) = tr; _yAN (7 + E[-1]1) ... (1 + E[-1]y).

This follows from the property

AN (T+E[_1]1) ... (7' +E[—1]N)

=AM (71 + E[-1)1) ... (7 + E[-1]y) AW



The coefficients of the column-determinant are related to the

oma through the relation

cdet(r + E[-1]) = tr; _yAN (7 + E[-1]1) ... (1 + E[-1]y).

This follows from the property

AN (T+E[_1]1) ... (7' +E[—1]N)

=AW (7 + E[-1]1) ... (7 + E[~1]y) A™),

implied by the fact that 7 + E[—1] is a Manin matrix.



Types B, C and D



Types B, C and D

Recall the symmetrizers associated with oy and sp,,:

1 Pap Qab
s = LT (1 fe ).
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1<a<b<m




Types B, C and D

Recall the symmetrizers associated with oy and sp,,:

1 Pap Qab
s = LT (1 fe ).
m +b—a N/2+b—a—1
1<a<b<m

and

(m) _ 1 _ Pah _ Qub
S - m! H (1 b—a n—b+a+1>'

1<a<b<m




Types B, C and D

Recall the symmetrizers associated with oy and sp,,:

m) __ Pab Qab
s )*ﬁ 11 (1+b—a_N/2+b—a—1)’

1<a<b<m

and
S(m):i H (1_ Pah . Qub )
m! o b—a n—b+a+1
Also,
©) wAm—2 N for g=on
w) = w =
te w+2m—2’

—2n for g=sp,,.



Let g=oy, spy With N=2n or N=2n+1.



Let g=oy, spy With N=2n or N=2n+1.

As before,

F,'j:E,'j—Ej/,'/ or Fij:Eij—é“ié“jEj/i/



Let g=oy, spy With N=2n or N=2n+1.

As before,
F,'j:E,'j—Ej/,‘/ or Fij:Eij—Ei€jEj/i/

and

Fl-j[r] = Fij e g[t, t_]].



Let g=oy, spy With N=2n or N=2n+1.

As before,
Fij:Eij_Ej’i’ or Fij:Eij_Eingj’i’

and

Fl-j[r] = Fij e g[t, t_]].

Combine into a matrix

N
Flr] = e; @ Fylr] € EndCY ®@ U(glt,1™"]).
ij=1



Theorem. All coefficients of the polynomial in 7 = —d/dt

@)ty S (1 + F[=1]1) ... (7 + F[~1]n)

:¢m07—m+¢ml7—mil ++¢mm



Theorem. All coefficients of the polynomial in 7 = —d/dt

@)ty ST (1 + F[=1]1) ... (7 + F[=1])

:(meTm_'_Qémleil ++¢mm

belong to the Feigin—Frenkel center 3(g).



Theorem. All coefficients of the polynomial in 7 = —d/dt

@)ty ST (1 + F[=1]1) ... (7 + F[=1])

= ¢m07—m + ¢ml Tmil et ¢mm
belong to the Feigin—Frenkel center 3(g).
In addition, in the case g = 0,,, the Pfaffian

PfF[—

o) o) =1+ Fon_1)ony [—1]

0'662,,

belongs to 3(02,).



Moreover, ¢,,, ¢4, ---,Ps,,, 1S acomplete set of

Segal-Sugawara vectors for 0,,+; and sp,,, whereas



Moreover, ¢,,, ¢4, ---,Ps,,, 1S acomplete set of

Segal-Sugawara vectors for 0,,+; and sp,,, whereas

B0y Daas- -+ s Pop_non_ns On is @ complete set of

Segal-Sugawara vectors for 0,,, where ¢, = PfF[—1].



Affine Harish-Chandra isomorphism

For a triangular decomposition g = n_ @ h @ n;. consider the

Harish-Chandra homomorphism

U(t_lg[t_l])h - U(r '),



Affine Harish-Chandra isomorphism

For a triangular decomposition g = n_ @ h @ n;. consider the

Harish-Chandra homomorphism
U( gl )" = U o),

the projection modulo the left ideal generated by ¢~ 'n_[r~1].



The restriction to 3(g) yields the Harish-Chandra isomorphism

f:3(8) — W(ta),



The restriction to 3(g) yields the Harish-Chandra isomorphism

f:3(8) — W(ta),

where W(tg) is the classical W-algebra associated with the

Langlands dual Lie algebra “g [Feigin and Frenkel, 1992].



Example g = gly. Set u;[r] = E;;[r]. We have

f:edet(r + E[—1]) — (74 pun[—1]) ... (7 + i [-1]).



Example g = gly. Set u;[r] = E;;[r]. We have
f:cdet(t +E[-1]) = (7 + pn[=1]) ... (7 + m[-1]).
Define the elements &,...,Ev by the Miura transformation

(T‘i‘ﬂN[—l]) ...(7'+,u1[—1]) =N e N 1y



Example g = gly. Set pu[r] = E;i[r]. We have
fredet(r +E[1]) = (7 4+ pn[=1]) ... (7 + m[=1]).
Define the elements &,...,Ev by the Miura transformation
(r+un[-1]) .o (rHm-1) =7V + &N+ Ey

Explicitly,
Em=en(T+m[-1],...., T+ pn[-1]) 1

is the noncommutative elementary symmetric function,



If N =2 then

& =[] + po 1],

& =y [=1] po[=1] + 1y [-2].



If N =2 then

& = [=1] + pp[=1],
& = m[=1] pp[-1] + m[-2].
If N=3 then
&1 = (=1 + pa[=1] + pa[=1],
& = =1 pa[=1] + iy [= 1] ps[=1] + po[=1] ps [ 1]
+ 2y [=2] + pa[-2],
& = py[=1] pa[=1] pa[=1] + 1 [=2] pio [1]

+ p [=2) pa[ =1 + gy [ 1] po[=2] + 2 1y [-3].



Then

Wigly) = C[T*Ey, ..., T"EN | k> 0.



Then

Wigly) = C[T*Ey, ..., T"EN | k> 0.

Also,
W(g[N) = C[TkHlv .o '7TkHN ’ k P 0]7



Then

Wigly) = C[T*Ey, ..., T"EN | k> 0.

Also,
W(g[N) = C[TkHlv .o '7TkHN ’ k P 0]7

where

How = b (T + g [~1], ..., T + pn[—1]) 1

is the noncommutative complete symmetric function

h(x1, .., %) = Z Xiy - Xi,

il <K



Example g=oy. Set w;[r] = Fir].



Example g=oy. Set w;[r] = Fir].

The Harish-Chandra image of the polynomial
Y (N) tr S (7 4+ F[—1]1) ... (7 + F[~1])

equals



Example g=oy. Set w;[r] = Fir].

The Harish-Chandra image of the polynomial
Y (N) tr S (7 4+ F[—1]1) ... (7 + F[~1])

equals

hm(T + g [=1, T 1), T = 1], T —

Hl[*l])



Example g=oy. Set w;[r] = Fir].

The Harish-Chandra image of the polynomial
Y (N) tr S (7 4+ F[—1]1) ... (7 + F[~1])

equals

hm(T + g [=1, T 1), T = 1], T —

for N=2n+ 1.

Hl[*l])



For the Lie algebra g = 05, the image is

%hm(7—+ﬂl[*1]""aTjLMn—l[*l]’T - /ln[*l]v""T - /ll[*l])

+ %hm(T_‘_lu’l[_l]""’T+lu’l’l[_1]77— - /’Ln—l[_l]a""T - /’Ll[_l])'



For the Lie algebra g = 05, the image is

%hm(7—+ﬂl[*1]""a7—+ﬂn—1[*1]’7— - /ln[*l]v""T - /ll[*l])

+ %hm(T_‘_lu’l[_l]""’T+lu’l’l[_1]77— - /’Ln—l[_l]v""T - /’Ll[_l])'
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For the Lie algebra g = 05, the image is

%hm(7—+ﬂl[*1]""aTjLMn—l[*l]’T - /ln[*l]v""T - /ll[*l])

+ %hm(T_‘_lu’l[_l]""’T+lu’l’l[_1]77— - /’Ln—l[_l]v""T - /’Ll[_l])'

The Harish-Chandra image of the Pfaffian

1
2np!

PfF[_l] = Z sgno - FO'(I)O’(Z)/[_I] T FO'(ZH—])O’(Z}’!)/[_I]

0662n

is found by

PEF[—1] = (i [-1] = T) ... (m,[-1] = T) 1.
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Example g = sp,,. Set w[r] = F;[r].
The Harish-Chandra image of the polynomial
Yn(=2n) tr SO (7 + F[=1]1) ... (7 + F[~1])
with 1 <m <2n+1 equals
em(T+ py[=1]s o T+ 17T = (=10 T = [1]).
Miura transformation for 05,41 [Drinfeld—Sokolov 1985]:
(r=ml=1) - (7 = 1)) 7 (7 [ =1]) - (74 [=1D)

_ 7_Zn—H +& 7_2n—1 + & 7_2n—2 NI gln—i—l-
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Classical W-algebras
Let ui,...,u, be abasis of the Cartan subalgebra § of g.
Set p;[r] = wit" and identify
U "]) = C ..o palr] | 1 < 0] = P
The classical W-algebra W(g) is defined by
W(g)={PeP,|ViP=0, i=1,...,n},

the V; are the screening operators.
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Example. For W(gly) the operators Vi, ..., Vy_; are

> 0 0
vi= FZ%V’ (8,u, r—l]_aui+1[—r—1]>’

Z 7 (r)Z — exp Z Ul Ml—&-l[ ] s

One verifies directly that

Vi (7 + pw[=1]) ... (7 + m[~1]) = 0.
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Equivalently,

Vi:pi(z) = exp/ (1i(z) — piv1(2)) dz,
Vi (@) o —exp [ (o)~ pin 2) e
and V;: pi(z) — 0 for j#ii+1,

where

o
pie) = mil-r—17,  i=1,...,N.
r=0
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Affine Poisson vertex algebra V(g)

Let g be a simple Lie algebra over C and
let X1,...,X,; be abasis of g.

Consider the differential algebra V = V(g),

v=cix\ .. . x"r=012.. with x?=x,

equipped with the derivation 0,

1

foralli=1,...,dand r > 0.
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Introduce the A-bracket on V as a linear map
VeV —-CAeV, a®bw— {ayb}.
By definition, it is given by
{X,\Y} =X, Y|+ (X, Y)X for X,Yeg,

and extended to V by sesquilinearity (a,b € V):

{0axb} = —A{axb},
skewsymmetry {axb} = —{b_r_pa},
and the Leibniz rule (a,b,c € V):

{axbc} ={arb}c+ {arc}b.
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Hamiltonian reduction

For a triangular decomposition g=n_@&hdn,

set p =n_ @ bh and define the projection
Tt g — P

Let f € n_ be a principal nilpotent in g.

Define the differential algebra homomorphism
p:V —=V(p), p(X) =m(X) + (f,X), Xeg.
The classical W-algebra W(g) is defined by

W(g) ={PeV(p) | p{X P} =0 forall Xen,}.
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The classical W-algebra W(g) is a Poisson vertex algebra

equipped with the A-bracket

{a/\b}p:p{a)\b}a a,bEW(g).

Motivation: Hamiltonian equations

Ou
or {HA”H,\:O

for u = u(r) € W(g) with the Hamiltonian H € W(g).

De Sole, Kac and Valeri, 2013-15; Drinfeld and Sokolov, 1985.
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Example. Let g = sl, with the basis e, f, .

> n
W(s[Z):C[Mvulvu”""]v M:Z_{'E_{'fev(p)

The \-bracket (of Virasoro—Magri) on W(sl,) is given by

3

{uup =21\ +90)u— ER

2
The Hamiltonian equation with H = % is equivalent to

the KdV equation



Another \-bracket (of Gardner—Faddeev—Zakharov) on W(sl,)
is given by

{uruly= A



Another \-bracket (of Gardner—Faddeev—Zakharov) on W(sl,)
is given by

{uruly= A

The Hamiltonian equation with

1 3_11“///

K=-—
2" Ty

is also equivalent to the KdV equation.
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Generators of W(gly)

Consider gly =spanof {E;|i,j=1,...,N}. Here p isthe

subalgebra of lower triangular matrices. Set
f=En+Exn+- - +Eyn_1.
We will work with the algebra V(p) ® C[d],
OEY —ED 0= E*).
The invariant symmetric bilinear form on gl is defined by

(X,Y) =tr XY, X, Y € gly.



Expand the determinant with entries in V(p) @ C[d],

det

0+ En 1 0

E> 0+ Ex 1

Ev_11  En-—12 En-—13

Eni En> Ens

=N +w oV Ty

0
0

0+ Eyn |



Expand the determinant with entries in V(p) @ C[d],

_8+E11 1 0 0o ... 0 ]
Ey  O0+Enxn 1 0 ... 0
det
Ev_11 En_1o En_13 ... ... 1
i Eny Eno Eys ... ... 8+ENN_
=0V 4w oV .
Theorem. All elements wy, ..., wy belong to W(gly). Moreover,

Wi(gly) = C[wgr),...,wl(\f) | r>0].
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Chevalley-type theorem

Let
¢:V(p) = V(h)

denote the homomorphism of differential algebras defined on

the generators as the projection p — b with the kernel n_.
The restriction of ¢ to W(g) is injective. The embedding

¢ : W(g) = V(b)

is often called the Miura transformation.
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Theorem.
The restriction of the homomorphism ¢ to the classical

W-algebra W(g) yields an isomorphism
¢ W(g) = W(g).

where W(g) is the subalgebra of V() which consists of the

elements annihilated by all screening operators V;,

Wig) = ﬂ ker V.
i=1



