Affine center at the critical level and quantum

Mishchenko—Fomenko subalgebras

Alexander Molev

University of Sydney



Plan



Plan

» Vinberg’s quantization problem.



Plan

» Vinberg’s quantization problem.

» Affine center at the critical level: explicit generators.



Plan

» Vinberg’s quantization problem.

» Affine center at the critical level: explicit generators.
» Applications:

» Harish-Chandra images of the symmetrized basic

invariants.



Plan

» Vinberg’s quantization problem.

» Affine center at the critical level: explicit generators.

» Applications:
» Harish-Chandra images of the symmetrized basic

invariants.

» Generators of quantum Mishchenko—Fomenko

subalgebras.



Mishchenko—Fomenko subalgebras



Mishchenko—Fomenko subalgebras

Let g be a simple Lie algebra and let n = rank g.



Mishchenko—Fomenko subalgebras

Let g be a simple Lie algebra and let n = rank g.

The symmetric algebra S(g) admits the Lie—Poisson bracket

!
X, X} = ckx, X; € g basis elements.
J ij
k=1



Mishchenko—Fomenko subalgebras
Let g be a simple Lie algebra and let n = rank g.
The symmetric algebra S(g) admits the Lie—Poisson bracket
I
{Xi,X;} => ci X, X;c€g basiselements.
k=1

There exist invariants P, such that S(g)? = C[Py, ..., P,].
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Let g be a simple Lie algebra and let n = rank g.

The symmetric algebra S(g) admits the Lie—Poisson bracket
I
{Xi,X;} => ci X, X;c€g basiselements.
k=1

There exist invariants P, such that S(g)? = C[Py, ..., P,].

The subalgebra S(g)? C S(g) coincides with

the Poisson center of S(g).
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Let P = P(Xy,...,X;) be an element of S(g) of degree d.

Fix any . € g* and shift the arguments
X — X+ t/L(X,'),

where ¢ is a variable:

P(Xy +tp(Xy), ., Xi + 1 (X))

=Py + Pyt + -+ Py,

Denote by A, the subalgebra of S(g) generated by all the

p-shifts P;) associated with all invariants P € S(g)®.
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Properties:

» The subalgebra Zu is Poisson commutative for any p € g*

[A. Mishchenko and A. Fomenko 1978].

> If 4 € g* = gis regular, then A, is a free polynomial
algebra [A. Bolsinov 1991;
B. Feigin, E. Frenkel and V. Toledano Laredo 2010].

> Moreover, A, is a maximal Poisson commutative

subalgebra of S(g) [D. Panyushev and O. Yakimova 2008].
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Vinberg'’s problem

The universal enveloping algebra U(g) possesses a canonical
filtration such that the associated graded algebra is isomorphic

to the symmetric algebra, grU(g) = S(g).

E. B. Vinberg 1990:

Is it possible to quantize the subalgebra A, of S(g)?

We would like to find a commutative subalgebra A,, of U(g)

(together with its free generators) such that gr. 4, = A,,.
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A solution via Yangian approach: classical types with regular

semisimple . [M. Nazarov and G. Olshanski 1996].

A solution in type A with regular semisimple p via the

symmetrization map [A. Tarasov 2000].

The uniqueness of the solution in this case is established

[A. Tarasov 2003].
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Affine center at the critical level

The affine Kac—Moody algebra g is the central extension
g=glt.r JeCK
with the commutation relations for X[r] = X1":
(X[r), Y[s]] = [X,Y][r+s] +ré, (X, Y)K.

Note that 7 = —% is a derivation of g.
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Consider the vacuum module at the critical level over g,

where the left ideal I is generated by g[7] and K + h".

The Feigin—Frenkel center 3(g) is defined by
3(8) ={v e V(g) | glt]v =0}
We have V(g) = U(r 'g[t"']) as vector spaces, and

3(9) is a T-invariant commutative subalgebra of U(r~'g[r~]).
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As a differential algebra, 3(g) possesses free generators
S1,...,S, (a complete set of Segal-Sugawara vectors),

where n = rank g [B. Feigin and E. Frenkel 1992].

Equivalently, 3(g) can be defined as the centralizer in

U(r~'g[r~1]) of the canonical Segal-Sugawara vector

where X1, ..., X; is an orthonormal basis of g.

[L. Rybnikov 2008; also O. Yakimova 2019].
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Connection with Casimir elements

For any nonzero z € C, the images of Sy,...,S, under the

evaluation homomorphism
0. U(t 'glt™"]) = Ulg),  X[r] = X,

are free generators of the center Z(g) of U(g).
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Type A
Take the Lie algebra gly with the standard basis {E;}.

Let A = (\y,..., \r) be a partition of m of length ¢ = ¢()), so

that \i > --- > X, >0and \; +---+ Xy = m.

We will denote by ¢, the number of permutations in the

symmetric group S,, of cycle type A:

m!

C =
AT aig122a0,! L menay,!

for A\ = (141292 ... m®m).
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The symmetrized A-minor D(A) and symmetrized A-permanent

P()) are elements of U(r~'gly[r~!]) defined by

N
1
D(A) = n Z Z sgno - Ei_ iy [ Eiy i [=Ad]

i1,...,ig=1 0E€EGy

and

N
1
P(A) = 7 Z Z Eio(l)il [=Ai]- 'Eio(/z) ie[=Ad]-

i1,...,ig=1 c€Gy
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Theorem (2021). All elements

and

belong to the Feigin—Frenkel center 3(gly).

Moreover, each family ¢,,...,¢y and ¢, ..., 1, is a complete

set of Segal-Sugawara vectors for gly.



Proof. Show that ¢,, and ¢

Segal-Sugawara vectors.

m

coincide with previously known



Proof. Show that ¢,, and 1,, coincide with previously known

m

Segal-Sugawara vectors. The elements ¢7, .. ., ¢3 defined by

T—l—Ell[—l] E]N[—l]
cdet : : =TVN4 5TV 1o 0%

ENI[_I] T—I—ENN[—I}



Proof. Show that ¢,, and v,, coincide with previously known

Segal-Sugawara vectors. The elements ¢7, ..., ¢3 defined by
T+En[-1] ... En[-1]
cdet : : =TV TV 1+ 445
ENI[_I] T—I—ENN[—I]

form a complete set of Segal-Sugawara vectors for gl

[A. Chervov and D. Talalaev 2006; A. Chervov and M. 2009].



Proof. Show that ¢,, and v,, coincide with previously known

Segal-Sugawara vectors. The elements ¢7, ..., ¢3 defined by
T+En[-1] ... En[-1]
cdet : : =TV TV 1+ 445
ENI[_I] T—I—ENN[—I]

form a complete set of Segal-Sugawara vectors for gl

[A. Chervov and D. Talalaev 2006; A. Chervov and M. 2009].

Verify that g2, — (Z ) ¢, for all m.
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Types B,C,D

Define the orthogonal Lie algebra oy with N = 2n and
N = 2n+ 1 and symplectic Lie algebra spy with N = 2n as

subalgebras of gly spanned by the elements F;;,
Fij:Eij_Ej’i’ or Fij:Eij_giEjEj’i’-

We use the involution i — i’ =N — i+ 1 onthe set {1,...,N},

and in the symplectic case we set

g =
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Let A = (A1,..., A\¢) be a partition of m of length ¢ = ¢(\).

For g = sp,,, define the symmetrized A\-minor by

2n

1
D()\) = ﬁ Z Z sgno - Fio'(l)il [—)\1] .. ‘Fi(,—(g) ie[—)\g].

ity ig=1 c€G,

For g = oy the symmetrized A-permanent is defined by

N
1
P(X) = 7 Z Z Fia(l)il [=M] .. -Fig(Z) ie[=Ad]-

Tl =1 0€6,

Both D(\) and P(\) are zero unless /() is even.
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n+1\""
O = <n€ ) ey D(X) for g =sp,,,

Abm

and

N4+¢—2\""!
qu:Z( ’ > cy P(N) for g= oy,

Am

belong to the Feigin—Frenkel center 3(g).
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In the case g = 0,,, the Pfaffian

PfF[—

o) oy [=1] -+ - Fon-1)o@ny [—1]

' 0'662,,

is known to belong to 3(02,) [M. 2013].

Theorem (2021). The family ¢,, ¢,, ..., ¢,, is a complete set of

Segal-Sugawara vectors for g = sp,, and g = 02,41, and

Gy Oy, -, Oyy_n, PEF[—1] is @ complete set of Segal-Sugawara

vectors for g = 0y,.
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Symmetrization map

The linear map w : S(g) — U(g) defined by
1
w:Xl...XnHa ZXU(I)"'XO'(I’!)7 Xi €g.
O‘EGn
is a g-module isomorphism known as the symmetrization map.

Hence we have a vector space isomorphism

w:S(g)* = Z(g).

20
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Casimir elements in type A

Consider the matrix

Evi ... Enn

with entries in the symmetric algebra S(gly).

21
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Write

det(ul + E) = u + &1V ' ... + Dy

and

We have

S(g[N)GIN = (C[(I)h"'vq)N] = C[\Pl)"'a\PN]‘

22



Write

det(ul + E) = u + &1V ' ... + Dy

and
det(1—gE)~' =1 +Z\Ifkq
We have
S(gly)®™ = C[®,..., oy = C[Ty,..., Tyl
This implies

Z(gly) = Clw(®1),...,@w(®n)] = Clw(¥y),...,=(¥y)].

22
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Explicitly, w(®,,) = Det,,(E) is the symmetrized minor of E,

Detm(E) = — Z Z sgno - Eia(|)i1 .. 'Eia(m) i

il ..... im:1 UEGm

while @ (WV,,) = Per,(E) is the symmetrized permanent of E,

N
1
Per,,(E) = p} Z Z Eig'(])i] .. -Eig(,,,) i

i17~~1 lm:1 O'EGm
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Explicitly, w(®,,) = Det,,(E) is the symmetrized minor of E,

Det,,(E) = — Z Z sgno - Ei(r(l)il .. 'Eio'(m) i

il ..... im:1 O'EGm

while @ (WV,,) = Per,(E) is the symmetrized permanent of E,

N
1
Per,,(E) = p} Z Z Eig(|>i| .. -Eig(,,,) i

i17~~1 in=1 O'EGm

They act by scalar multiplication in L(Ay, ..., Ay).
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Elementary shifted symmetric polynomials:

e ) = D> Ay = D (A, —m ),

i< <im

Complete shifted symmetric polynomials:

By = > A+ D (N, +m 1),

1<+

24
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Theorem (2021). For the action in L(Ay, ..., \y) we have
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m
k=1
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The Stirling number of the second kind {’Z} counts the number

of partitions of the set {1, ..., m} into k nonempty subsets.

Theorem (2021). For the action in L(Ay, ..., \y) we have
" (m) (N [N\ ",
(D) ; {k} <m> <k> ZAOYID VY
and

25
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Consider the matrix

Fi ... Fin

Fyvi ... Fny

with entries in S(g) for g = oy Or g = spy.
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Casimir elements in types B, C, D

Consider the matrix

Fi ... Fin

FN1 e FNN
with entries in S(g) for g = oy Or g = spy.

We let N =2n+1 fortype B, and N = 2n for types C and D.

26



Write
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Write

det(ul + F) = u™ + O u® 2 4+ - + Oy,

and

det(1 —gF)~

_1+Z\If2kq

for

for g = 5Py,

g =0n.

27



Write
det(ul + F) = u™ + Qou™ 2 4+ + Oy,  for g=sp,,
and

det(1 — gF)~ —l—i-Z\Ifqu for g = oy.

The symmetrized invariants act by scalar multiplication in the

irreducible highest weight g-modules L(\;, ..., \,).
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Theorem (2021).

LD

k=1

(i) For g = sp,, we have

ey

X eZ(/\l,...,)\n,O,

Dy

7_)\1)-

28



Theorem (2021). (i) For g = sp,, we have

= () )

X ef (A, A 0, = A, - ..

(il) For g = 02,11 we have

= 2 (G ()

< B - A=Ay

7_)\1)'

28



(iii) For g = 0y, we have

k

cw LY

(A oy Ane1, — An,

| =

<

1 *
+§hk()\1""

© _)\l)

s Ans

Aty

29



(iii) For g = 0y, we have

= 20
X

BEO - At = Ay e = A1)

| -

1
+ EhZ()\l,.. Ay, —An_ 1,

Remark. If mis odd, then the elements ®,,, ¥,, are

understood as equal to zero.

7_)\1)>-
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Quantum Mishchenko—Fomenko subalgebras

Given p € g* and nonzero z € C, consider the homomorphism
Ouz U(Flg[fl]) — U(g), X[r] — XZ"+ 8, 1 p(X).

The quantum Mishchenko—Fomenko subalgebra A,, C U(g) is
defined as the image of the Feigin—Frenkel center

3(8) € U(+~'g[r~']) under the homomorphism o, ..

This subalgebra does not depend on z.

[L. Rybnikov 2006].
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If S € 35(g) is of degree d, define S € U(g) by
04(8) =Sy 2™+ 84T + S

Theorem [FFTL 2010, R 2006]. Let i» € g* be regular.
If Sy,...,S, is a complete set of Segal-Sugawara vectors of the

respective degrees di, . .., d,, then the elements
Sk(i)’ kzl,...7l’l’ i:O,l,...7dk—1’
are free generators of A,. Moreover, gr A, = A,,.

Conjecture [FFTL 2010]. gr A, = A, for all u € g*.

31
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Type A

For p e gly set p; = u(E;) and consider the matrix

Fipoo Han

Hny o -+ KNN

Theorem. The subalgebra A, C U(gly) is generated by the

coefficients of each family of polynomials

Det,,(E + t 1) and Per,,(E 4+t p), m> 1.

32



Moreover, if 1 is regular, then the non-constant coefficients of

each family of polynomials

Det,,(E + t 1) and Per,,(E + 1), m=1,...,N,

are free generators of the algebra A,,.

33



Moreover, if 1 is regular, then the non-constant coefficients of

each family of polynomials
Det,,(E + 1 ) and Per,,(E + t ), m=1,...,N,
are free generators of the algebra A,,.

[A. Tarasov 2000, 2003; O. Yakimova and M. 2017].

33



Types B,C,D
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Types B,C,D

Now let g = 02,41, 5Py, OF 02,.
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For € g* set u; = pu(F;) and consider the matrix
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Types B,C,D

Now let g = 02,41, 5Py, OF 02,.

For € g* set u; = pu(F;) and consider the matrix
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Theorem [O. Yakimova and M. 2017].

Suppose that 1 € g* is regular.
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Theorem [O. Yakimova and M. 2017].

Suppose that 1 € g* is regular.

» The non-constant coefficients of the polynomials
Det,,(F + t ) with m = 2,4,...,2n are free generators of

the algebra A, for g = sp,,.
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Theorem [O. Yakimova and M. 2017].

Suppose that 1 € g* is regular.

» The non-constant coefficients of the polynomials
Det,,(F + t ) with m = 2,4,...,2n are free generators of

the algebra A, for g = sp,,.

» The non-constant coefficients of the polynomials
Per,,(F + tp) withm = 2.4,... 2n are free generators of

the algebra A, for g = 02,4 1.
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» The non-constant coefficients of the polynomials
Pf (F + t 1) and Per,, (F + 1 p) withm = 2,4, ... ,2n — 2 are

free generators of the algebra A, for g = 0y,.
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» The non-constant coefficients of the polynomials
Pf (F + 1) and Per,,(F + t ) With m = 2,4,...,2n — 2 are

free generators of the algebra A, for g = 0y,.

Theorem [V. Futorny and M. 2015; O. Yakimova and M. 2017].
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» The non-constant coefficients of the polynomials
Pf (F + 1) and Per,,(F + t ) With m = 2,4,...,2n — 2 are

free generators of the algebra A, for g = 0y,.

Theorem [V. Futorny and M. 2015; O. Yakimova and M. 2017].

The FFTL-conjecture holds in types A and C':
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» The non-constant coefficients of the polynomials
Pf (F + 1) and Per,,(F + t ) With m = 2,4,...,2n — 2 are

free generators of the algebra A, for g = 0y,.

Theorem [V. Futorny and M. 2015; O. Yakimova and M. 2017].

The FFTL-conjecture holds in types A and C':

grA, = A, forall € g*.
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Free generators of A,: type A
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Free generators of A,: type A

Suppose that the distinct eigenvalues of i are Ay, ...

by
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Free generators of A,: type A

Suppose that the distinct eigenvalues of i are Ay, ..., A,
To each ); associate the Young diagram a()) whose rows are

the sizes of the Jordan blocks with the eigenvalue ;.
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Free generators of A,: type A

Suppose that the distinct eigenvalues of i are Ay, ..., A,
To each ); associate the Young diagram a()) whose rows are

the sizes of the Jordan blocks with the eigenvalue ;.

Introduce another Young diagram by

the sum is taken by rows.

37



Write the numbers 1,2, ..., N consecutively from left to right in
the boxes of each row of the Young diagram II beginning from

the top row.
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Write the numbers 1,2, ..., N consecutively from left to right in
the boxes of each row of the Young diagram II beginning from

the top row.

Foreach m € {1,...,N} define r(m) as the row number of m.
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Write the numbers 1,2, ..., N consecutively from left to right in
the boxes of each row of the Young diagram II beginning from

the top row.
Foreach m € {1,...,N} define r(m) as the row number of m.
Introduce another Young diagram by

o=(r(N)=1,....r(1) = 1).

38



Example. For IT = (3,2, 1) we have

23]

‘O\-lk»—
[,
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Example. For IT = (3,2, 1) we have

23]

‘O\-lk»—
[,

Therefore
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Example. For IT = (3,2, 1) we have

23]

‘O\-lk»—
[,

Therefore

0= (2, 17 1)
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Associate the coefficients of the polynomials

Dety(E + t j1) = Z(I)gkt
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Associate the coefficients of the polynomials

Dety(E + t j1) = Z(I)gkt

with boxes of the diagram I = (N,N — 1,...

,1) by
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Associate the coefficients of the polynomials

Dety(E + t j1) = Z@Mt

with boxes of the diagram I = (N,N — 1,...
Pyy—1 Dyn—2
Py_in—2  Py-in-3
r =
Dy P20

,1) by
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The elements ®,; corresponding to the boxes of the skew

diagram I'/ ¢ are free generators of the subalgebra A,,.
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The elements ®,; corresponding to the boxes of the skew

diagram I'/ ¢ are free generators of the subalgebra A,,.

Example. Take N = 6 and let ;1 have two distinct eigenvalues

with the associated Young diagrams

H . |
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The elements ®,; corresponding to the boxes of the skew

diagram I'/ ¢ are free generators of the subalgebra A,,.

Example. Take N = 6 and let ;1 have two distinct eigenvalues

with the associated Young diagrams
H |

ThenIl = (3,2,1) sothat p = (2,1,1)
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The elements ®,; corresponding to the boxes of the skew

diagram I'/ ¢ are free generators of the subalgebra A,,.

Example. Take N = 6 and let ;1 have two distinct eigenvalues

with the associated Young diagrams
H |

ThenII = (3,2,1)sothat o = (2,1,1)and I'/o is

41



Example. If pis regular, then it is associated with row

diagrams o).
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Example. If pis regular, then it is associated with row
diagrams (9. Hence, ¢ = @ and all elements ®,, are

algebraically independent.
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Example. If pis regular, then it is associated with row
diagrams (9. Hence, ¢ = @ and all elements ®,, are

algebraically independent.

Example. If uis a scalar matrix then o= (N —1,N —2,...
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Example. If pis regular, then it is associated with row
diagrams (9. Hence, ¢ = @ and all elements ®,, are

algebraically independent.

Example. If uis a scalar matrix then o= (N —1,N —2,...

The skew diagram I'/p is

]

1)
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Example. If pis regular, then it is associated with row
diagrams (9. Hence, ¢ = @ and all elements ®,, are

algebraically independent.

Example. If uis a scalar matrix then o= (N —1,N —2,...

The skew diagram I'/p is

]

L]

Thus ‘AH =C [‘I)l(), oy (I)NO} = Z(g[N)

1)

42



