
1

Affine center at the critical level and quantum

Mishchenko–Fomenko subalgebras

Alexander Molev

University of Sydney



2

Plan

I Vinberg’s quantization problem.

I Affine center at the critical level: explicit generators.

I Applications:

I Harish-Chandra images of the symmetrized basic

invariants.

I Generators of quantum Mishchenko–Fomenko

subalgebras.



2

Plan

I Vinberg’s quantization problem.

I Affine center at the critical level: explicit generators.

I Applications:

I Harish-Chandra images of the symmetrized basic

invariants.

I Generators of quantum Mishchenko–Fomenko

subalgebras.



2

Plan

I Vinberg’s quantization problem.

I Affine center at the critical level: explicit generators.

I Applications:

I Harish-Chandra images of the symmetrized basic

invariants.

I Generators of quantum Mishchenko–Fomenko

subalgebras.



2

Plan

I Vinberg’s quantization problem.

I Affine center at the critical level: explicit generators.

I Applications:

I Harish-Chandra images of the symmetrized basic

invariants.

I Generators of quantum Mishchenko–Fomenko

subalgebras.



2

Plan

I Vinberg’s quantization problem.

I Affine center at the critical level: explicit generators.

I Applications:

I Harish-Chandra images of the symmetrized basic

invariants.

I Generators of quantum Mishchenko–Fomenko

subalgebras.



3

Mishchenko–Fomenko subalgebras

Let g be a simple Lie algebra and let n = rank g.

The symmetric algebra S(g) admits the Lie–Poisson bracket

{Xi,Xj} =
l∑

k=1

ck
ij Xk, Xi ∈ g basis elements.

There exist invariants Pk such that S(g)g = C [P1, . . . ,Pn].

The subalgebra S(g)g ⊂ S(g) coincides with

the Poisson center of S(g).
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Let P = P(X1, . . . ,Xl) be an element of S(g) of degree d.

Fix any µ ∈ g∗ and shift the arguments

Xi 7→ Xi + t µ(Xi),

where t is a variable:

P
(
X1 + t µ(X1), . . . ,Xl + t µ(Xl)

)
= P(0) + P(1) t + · · ·+ P(d) t d.

Denote by Aµ the subalgebra of S(g) generated by all the

µ-shifts P(i) associated with all invariants P ∈ S(g)g.
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Properties:

I The subalgebra Aµ is Poisson commutative for any µ ∈ g∗

[A. Mishchenko and A. Fomenko 1978].

I If µ ∈ g∗ ∼= g is regular, then Aµ is a free polynomial

algebra [A. Bolsinov 1991;

B. Feigin, E. Frenkel and V. Toledano Laredo 2010].

I Moreover, Aµ is a maximal Poisson commutative

subalgebra of S(g) [D. Panyushev and O. Yakimova 2008].
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Vinberg’s problem

The universal enveloping algebra U(g) possesses a canonical

filtration such that the associated graded algebra is isomorphic

to the symmetric algebra, gr U(g) = S(g).

E. B. Vinberg 1990:

Is it possible to quantize the subalgebra Aµ of S(g)?

We would like to find a commutative subalgebra Aµ of U(g)

(together with its free generators) such that grAµ = Aµ.
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A solution via Yangian approach: classical types with regular

semisimple µ [M. Nazarov and G. Olshanski 1996].

A solution in type A with regular semisimple µ via the

symmetrization map [A. Tarasov 2000].

The uniqueness of the solution in this case is established

[A. Tarasov 2003].
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Affine center at the critical level

The affine Kac–Moody algebra ĝ is the central extension

ĝ = g[t, t−1]⊕ CK

with the commutation relations for X[r] = X tr:

[
X[r],Y[s]

]
= [X,Y][r + s] + r δr,−s〈X,Y〉K.

Note that T = − d
dt

is a derivation of ĝ.
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Consider the vacuum module at the critical level over ĝ,

V(g) = U(ĝ)/I,

where the left ideal I is generated by g[t] and K + h∨.

The Feigin–Frenkel center z(ĝ) is defined by

z(ĝ) = {v ∈ V(g) | g[t]v = 0}.

We have V(g) ∼= U
(
t−1g[t−1]

)
as vector spaces, and

z(ĝ) is a T-invariant commutative subalgebra of U
(
t−1g[t−1]

)
.
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As a differential algebra, z(ĝ) possesses free generators

S1, . . . , Sn (a complete set of Segal–Sugawara vectors),

where n = rank g

[B. Feigin and E. Frenkel 1992].

Equivalently, z(ĝ) can be defined as the centralizer in

U
(
t−1g[t−1]

)
of the canonical Segal–Sugawara vector

S =
l∑

i=1

Xi[−1]2,

where X1, . . . ,Xl is an orthonormal basis of g.

[L. Rybnikov 2008; also O. Yakimova 2019].



10

As a differential algebra, z(ĝ) possesses free generators
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Connection with Casimir elements

For any nonzero z ∈ C , the images of S1, . . . , Sn under the

evaluation homomorphism

%z : U
(
t−1g[t−1]

)
→ U(g), X[r] 7→ X zr,

are free generators of the center Z(g) of U(g).
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Type A

Take the Lie algebra glN with the standard basis {Eij}.

Let λ = (λ1, . . . , λ`) be a partition of m of length ` = `(λ), so

that λ1 > · · · > λ` > 0 and λ1 + · · ·+ λ` = m.

We will denote by cλ the number of permutations in the

symmetric group Sm of cycle type λ:

cλ =
m!

1α1α1! 2α2α2! . . .mαmαm!

for λ = (1α12α2 . . .mαm).
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The symmetrized λ-minor D(λ) and symmetrized λ-permanent

P(λ) are elements of U
(
t−1glN [t−1]

)
defined by

D(λ) =
1
` !

N∑
i1,..., i`=1

∑
σ∈S`

sgnσ · Eiσ(1) i1 [−λ1] . . .Eiσ(`) i` [−λ`]

and

P(λ) =
1
` !

N∑
i1,..., i`=1

∑
σ∈S`

Eiσ(1) i1 [−λ1] . . .Eiσ(`) i` [−λ`].
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Theorem (2021). All elements

φm =
∑
λ`m

(
N
`

)−1

cλ D(λ)

and

ψm =
∑
λ`m

(
N + `− 1

`

)−1

cλ P(λ)

belong to the Feigin–Frenkel center z(ĝlN).

Moreover, each family φ1, . . . , φN and ψ1, . . . , ψN is a complete

set of Segal–Sugawara vectors for glN .
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Proof. Show that φm and ψm coincide with previously known

Segal–Sugawara vectors.

The elements φ◦1, . . . , φ
◦
N defined by

cdet


T + E11[−1] . . . E1N [−1]

...
. . .

...

EN1[−1] . . . T + ENN [−1]

 = T N +φ◦1 T N−1 + · · ·+φ◦N

form a complete set of Segal–Sugawara vectors for glN

[A. Chervov and D. Talalaev 2006; A. Chervov and M. 2009].

Verify that φ◦m =

(
N
m

)
φm for all m.
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Types B,C,D

Define the orthogonal Lie algebra oN with N = 2n and

N = 2n + 1 and symplectic Lie algebra spN with N = 2n as

subalgebras of glN spanned by the elements Fi j,

Fi j = Ei j − Ej ′i ′ or Fi j = Ei j − εi εj Ej ′i ′ .

We use the involution i 7→ i ′ = N − i + 1 on the set {1, . . . ,N},

and in the symplectic case we set

εi =


1 for i = 1, . . . , n

−1 for i = n + 1, . . . , 2n.
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Let λ = (λ1, . . . , λ`) be a partition of m of length ` = `(λ).

For g = sp2n define the symmetrized λ-minor by

D(λ) =
1
` !

2n∑
i1,..., i`=1

∑
σ∈S`

sgnσ · Fiσ(1) i1 [−λ1] . . .Fiσ(`) i` [−λ`].

For g = oN the symmetrized λ-permanent is defined by

P(λ) =
1
` !

N∑
i1,..., i`=1

∑
σ∈S`

Fiσ(1) i1 [−λ1] . . .Fiσ(`) i` [−λ`].

Both D(λ) and P(λ) are zero unless `(λ) is even.



17

Let λ = (λ1, . . . , λ`) be a partition of m of length ` = `(λ).

For g = sp2n define the symmetrized λ-minor by

D(λ) =
1
` !

2n∑
i1,..., i`=1

∑
σ∈S`

sgnσ · Fiσ(1) i1 [−λ1] . . .Fiσ(`) i` [−λ`].

For g = oN the symmetrized λ-permanent is defined by

P(λ) =
1
` !

N∑
i1,..., i`=1

∑
σ∈S`

Fiσ(1) i1 [−λ1] . . .Fiσ(`) i` [−λ`].

Both D(λ) and P(λ) are zero unless `(λ) is even.



17

Let λ = (λ1, . . . , λ`) be a partition of m of length ` = `(λ).

For g = sp2n define the symmetrized λ-minor by

D(λ) =
1
` !

2n∑
i1,..., i`=1

∑
σ∈S`

sgnσ · Fiσ(1) i1 [−λ1] . . .Fiσ(`) i` [−λ`].

For g = oN the symmetrized λ-permanent is defined by

P(λ) =
1
` !

N∑
i1,..., i`=1

∑
σ∈S`

Fiσ(1) i1 [−λ1] . . .Fiσ(`) i` [−λ`].

Both D(λ) and P(λ) are zero unless `(λ) is even.



17

Let λ = (λ1, . . . , λ`) be a partition of m of length ` = `(λ).

For g = sp2n define the symmetrized λ-minor by

D(λ) =
1
` !

2n∑
i1,..., i`=1

∑
σ∈S`

sgnσ · Fiσ(1) i1 [−λ1] . . .Fiσ(`) i` [−λ`].

For g = oN the symmetrized λ-permanent is defined by

P(λ) =
1
` !

N∑
i1,..., i`=1

∑
σ∈S`

Fiσ(1) i1 [−λ1] . . .Fiσ(`) i` [−λ`].

Both D(λ) and P(λ) are zero unless `(λ) is even.



17

Let λ = (λ1, . . . , λ`) be a partition of m of length ` = `(λ).

For g = sp2n define the symmetrized λ-minor by

D(λ) =
1
` !

2n∑
i1,..., i`=1

∑
σ∈S`

sgnσ · Fiσ(1) i1 [−λ1] . . .Fiσ(`) i` [−λ`].

For g = oN the symmetrized λ-permanent is defined by

P(λ) =
1
` !

N∑
i1,..., i`=1

∑
σ∈S`

Fiσ(1) i1 [−λ1] . . .Fiσ(`) i` [−λ`].

Both D(λ) and P(λ) are zero unless `(λ) is even.



18

Theorem (2021). All elements

φm =
∑
λ`m

(
2n + 1
`

)−1

cλ D(λ) for g = sp2n,

and

φm =
∑
λ`m

(
N + `− 2

`

)−1

cλ P(λ) for g = oN ,

belong to the Feigin–Frenkel center z(ĝ).
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In the case g = o2n, the Pfaffian

Pf F[−1] =
1

2nn!

∑
σ∈S2n

sgnσ · Fσ(1)σ(2)′ [−1] . . .Fσ(2n−1)σ(2n)′ [−1]

is known to belong to z(ô2n) [M. 2013].

Theorem (2021). The family φ2, φ4, . . . , φ2n is a complete set of

Segal–Sugawara vectors for g = sp2n and g = o2n+1, and

φ2, φ4, . . . , φ2n−2,PfF[−1] is a complete set of Segal–Sugawara

vectors for g = o2n.
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Symmetrization map

The linear map $ : S(g)→ U(g) defined by

$ : X1 . . .Xn 7→
1
n!

∑
σ∈Sn

Xσ(1) . . .Xσ(n), Xi ∈ g.

is a g-module isomorphism known as the symmetrization map.

Hence we have a vector space isomorphism

$ : S(g)g ∼→ Z(g).
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Casimir elements in type A

Consider the matrix

E =


E11 . . . E1N

... . . .
...

EN1 . . . ENN



with entries in the symmetric algebra S(glN).
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Write

det(u1 + E) = uN + Φ1 uN−1 + · · ·+ ΦN

and

det(1− qE)−1 = 1 +

∞∑
k=1

Ψk qk.

We have

S(glN)glN = C [Φ1, . . . ,ΦN ] = C [Ψ1, . . . ,ΨN ].

This implies

Z(glN) = C
[
$(Φ1), . . . , $(ΦN)

]
= C

[
$(Ψ1), . . . , $(ΨN)

]
.
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Explicitly, $(Φm) = Detm(E) is the symmetrized minor of E,

Detm(E) =
1

m !

N∑
i1,..., im=1

∑
σ∈Sm

sgnσ · Eiσ(1) i1 . . .Eiσ(m) im ,

while $(Ψm) = Perm(E) is the symmetrized permanent of E,

Perm(E) =
1

m !

N∑
i1,..., im=1

∑
σ∈Sm

Eiσ(1) i1 . . .Eiσ(m) im .

They act by scalar multiplication in L(λ1, . . . , λN).
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Elementary shifted symmetric polynomials:

e∗m(λ1, . . . , λN) =
∑

i1<···<im

λi1(λi2 − 1) . . . (λim − m + 1).

Complete shifted symmetric polynomials:

h∗m(λ1, . . . , λN) =
∑

i16···6im

λi1(λi2 + 1) . . . (λim + m− 1).



24

Elementary shifted symmetric polynomials:

e∗m(λ1, . . . , λN) =
∑

i1<···<im

λi1(λi2 − 1) . . . (λim − m + 1).

Complete shifted symmetric polynomials:

h∗m(λ1, . . . , λN) =
∑

i16···6im

λi1(λi2 + 1) . . . (λim + m− 1).



25

The Stirling number of the second kind
{

m
k

}
counts the number

of partitions of the set {1, . . . ,m} into k nonempty subsets.

Theorem (2021). For the action in L(λ1, . . . , λN) we have

$(Φm) 7→
m∑

k=1

{
m
k

}(
N
m

)(
N
k

)−1

e∗k(λ1, . . . , λN)

and

$(Ψm) 7→
m∑

k=1

{
m
k

}(
−N
m

)(
−N

k

)−1

h∗k(λ1, . . . , λN).
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Casimir elements in types B, C, D

Consider the matrix

F =


F11 . . . F1N

... . . .
...

FN1 . . . FNN



with entries in S(g) for g = oN or g = spN .

We let N = 2n + 1 for type B, and N = 2n for types C and D.
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Write

det(u1 + F) = u2n + Φ2 u2n−2 + · · ·+ Φ2n for g = sp2n,

and

det(1− qF)−1 = 1 +
∞∑

k=1

Ψ2k q2k for g = oN .

The symmetrized invariants act by scalar multiplication in the

irreducible highest weight g-modules L(λ1, . . . , λn).



27

Write

det(u1 + F) = u2n + Φ2 u2n−2 + · · ·+ Φ2n for g = sp2n,

and

det(1− qF)−1 = 1 +

∞∑
k=1

Ψ2k q2k for g = oN .

The symmetrized invariants act by scalar multiplication in the

irreducible highest weight g-modules L(λ1, . . . , λn).



27

Write

det(u1 + F) = u2n + Φ2 u2n−2 + · · ·+ Φ2n for g = sp2n,

and

det(1− qF)−1 = 1 +

∞∑
k=1

Ψ2k q2k for g = oN .

The symmetrized invariants act by scalar multiplication in the

irreducible highest weight g-modules L(λ1, . . . , λn).



28

Theorem (2021). (i) For g = sp2n we have

$(Φm) 7→
m∑

k=1

{
m
k

}(
2n + 1

m

)(
2n + 1

k

)−1

× e∗k(λ1, . . . , λn, 0,−λn, . . . ,−λ1).

(ii) For g = o2n+1 we have

$(Ψm) 7→
m∑

k=1

{
m
k

}(
−2n

m

)(
−2n

k

)−1

× h∗k(λ1, . . . , λn,−λn, . . . ,−λ1).
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(iii) For g = o2n we have

$(Ψm) 7→
m∑

k=1

{
m
k

}(
−2n + 1

m

)(
−2n + 1

k

)−1

×
(1

2
h∗k(λ1, . . . , λn−1,−λn, . . . ,−λ1)

+
1
2

h∗k(λ1, . . . , λn,−λn−1, . . . ,−λ1)
)
.

Remark. If m is odd, then the elements Φm, Ψm are

understood as equal to zero.
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Quantum Mishchenko–Fomenko subalgebras

Given µ ∈ g∗ and nonzero z ∈ C , consider the homomorphism

%µ,z : U
(
t−1g[t−1]

)
→ U(g), X[r] 7→ X zr + δr,−1 µ(X).

The quantum Mishchenko–Fomenko subalgebra Aµ ⊂ U(g) is

defined as the image of the Feigin–Frenkel center

z(ĝ) ⊂ U
(
t−1g[t−1]

)
under the homomorphism %µ,z.

This subalgebra does not depend on z.

[L. Rybnikov 2006].
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If S ∈ z(ĝ) is of degree d, define S(a) ∈ U(g) by

%µ,z(S) = S(0) z−d + · · ·+ S(d−1) z−1 + S(d).

Theorem [FFTL 2010, R 2006]. Let µ ∈ g∗ be regular.

If S1, . . . , Sn is a complete set of Segal–Sugawara vectors of the

respective degrees d1, . . . , dn, then the elements

Sk (i), k = 1, . . . , n, i = 0, 1, . . . , dk − 1,

are free generators of Aµ. Moreover, gr Aµ = Aµ.

Conjecture [FFTL 2010]. gr Aµ = Aµ for all µ ∈ g∗.
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If S ∈ z(ĝ) is of degree d, define S(a) ∈ U(g) by

%µ,z(S) = S(0) z−d + · · ·+ S(d−1) z−1 + S(d).

Theorem [FFTL 2010, R 2006]. Let µ ∈ g∗ be regular.

If S1, . . . , Sn is a complete set of Segal–Sugawara vectors of the

respective degrees d1, . . . , dn, then the elements

Sk (i), k = 1, . . . , n, i = 0, 1, . . . , dk − 1,

are free generators of Aµ. Moreover, gr Aµ = Aµ.

Conjecture [FFTL 2010]. gr Aµ = Aµ for all µ ∈ g∗.



31
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Type A

For µ ∈ gl∗N set µij = µ(Eij) and consider the matrix

µ =


µ11 . . . µ1N
...

...

µN1 . . . µNN

 .

Theorem. The subalgebra Aµ ⊂ U(glN) is generated by the

coefficients of each family of polynomials

Detm(E + t µ) and Perm(E + t µ), m > 1.
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Moreover, if µ is regular, then the non-constant coefficients of

each family of polynomials

Detm(E + t µ) and Perm(E + t µ), m = 1, . . . ,N,

are free generators of the algebra Aµ.

[A. Tarasov 2000, 2003; O. Yakimova and M. 2017].



33

Moreover, if µ is regular, then the non-constant coefficients of

each family of polynomials

Detm(E + t µ) and Perm(E + t µ), m = 1, . . . ,N,

are free generators of the algebra Aµ.

[A. Tarasov 2000, 2003; O. Yakimova and M. 2017].



34

Types B,C,D

Now let g = o2n+1, sp2n or o2n.

For µ ∈ g∗ set µij = µ(Fij) and consider the matrix

µ =


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Theorem [O. Yakimova and M. 2017].

Suppose that µ ∈ g∗ is regular.

I The non-constant coefficients of the polynomials

Detm(F + t µ) with m = 2, 4, . . . , 2n are free generators of

the algebra Aµ for g = sp2n.

I The non-constant coefficients of the polynomials

Perm(F + t µ) with m = 2, 4, . . . , 2n are free generators of

the algebra Aµ for g = o2n+1.
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I The non-constant coefficients of the polynomials

Pf
(
F + t µ

)
and Perm(F + t µ) with m = 2, 4, . . . , 2n− 2 are

free generators of the algebra Aµ for g = o2n.

Theorem [V. Futorny and M. 2015; O. Yakimova and M. 2017].

The FFTL-conjecture holds in types A and C :

grAµ = Aµ for all µ ∈ g∗.
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Free generators of Aµ: type A

Suppose that the distinct eigenvalues of µ are λ1, . . . , λr.

To each λi associate the Young diagram α(i) whose rows are

the sizes of the Jordan blocks with the eigenvalue λi.

Introduce another Young diagram by

Π = α(1) + · · ·+ α(r),

the sum is taken by rows.
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Write the numbers 1, 2, . . . ,N consecutively from left to right in

the boxes of each row of the Young diagram Π beginning from

the top row.

For each m ∈ {1, . . . ,N} define r(m) as the row number of m.

Introduce another Young diagram by

% =
(
r(N)− 1, . . . , r(1)− 1

)
.
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Example. For Π = (3, 2, 1) we have

1 2 3
4 5
6

Therefore

r(1) = r(2) = r(3) = 1, r(4) = r(5) = 2, r(6) = 3

and

% = (2, 1, 1).
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Associate the coefficients of the polynomials

Det`(E + t µ) =
∑̀
k=0

Φ`k t k

with boxes of the diagram Γ = (N,N − 1, . . . , 1) by

Γ =

ΦN N−1 ΦN N−2 . . . ΦN 1 ΦN 0

ΦN−1N−2 ΦN−1N−3 . . . ΦN−1 0

. . . . . . . . .

Φ2 1 Φ2 0

Φ1 0
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The elements Φ`k corresponding to the boxes of the skew

diagram Γ/% are free generators of the subalgebra Aµ.

Example. Take N = 6 and let µ have two distinct eigenvalues

with the associated Young diagrams

Then Π = (3, 2, 1) so that % = (2, 1, 1) and Γ/% is
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Example. If µ is regular, then it is associated with row

diagrams α(i).

Hence, % = ∅ and all elements Φ` k are

algebraically independent.

Example. If µ is a scalar matrix then % = (N − 1,N − 2, . . . , 1).

The skew diagram Γ/% is

Thus Aµ = C
[
Φ1 0, . . . ,ΦN 0

]
= Z(glN).
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