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Rational Gaudin mode

Let g be a simple Lie algebra over C.

Consider the polynomial current Lie algebra r~!g[+~!] which

spanned by the elements X[r] = X" with X € g and r < 0.
Given any element x € g* and a nonzero z € C, the mapping
U(e'gl™']) = Ulg), X[ X2+ 6,y x(X),

defines a (shifted) evaluation homomorphism.
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Using the coassociativity of the standard coproduct on

U(r'g[r"]) defined by

AY—=YR1+1QY, Y €t g1,

for any £ > 1 we get the homomorphism

U(r gl Y]) = U gl )™

as an iterated coproduct map.
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Now fix distinct complex numbers z;,...,z, and let u be a
complex parameter. Applying the evaluation homomorphisms

to the tensor factors, we get another homomorphism
v . U(t_lg[t_l]) — U(g)(w,

given by

where X, = 190D g X @ 1®9(-a),
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Feigin—Frenkel center
Consider the affine Kac—Moody algebra
=gl ] CK.

Identify U(+'g[¢"]) with the vacuum module U(r~'g[t~'])1 over

g at the critical level:
it is generated by the vacuum vector 1 such that

gJ1=0 and Kl1=-h"1
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The Feigin—Frenkel center 3(g) is a commutative subalgebra of

U(r~'g[t~"]) defined as the subalgebra of invariants:
5@ = {ve U( gl )1 ] gl]v = 0}.
Elements of 3(g) are known as Segal-Sugawara vectors.

Higher Gaudin Hamiltonians are obtained by taking the images

of Segal-Sugawara vectors under the homomorphism
U glr!]) — Ug)®!

[FFR 1994, Rybnikov 2006, FFTL 2010].



In particular, the quadratic Gaudin Hamiltonian arises from the

canonical Segal-Sugawara vector

d

S = Zja[_l]']a[_l]7

a=1
where Ji,...,Jyand J', ..., J¢ are dual bases of g with respect

to the normalized Killing form.



Explicit generators of the Feigin—Frenkel center were found in
type A by A. Chervov and D. Talalaev (2006),

in types B, C, D by A. M. (2013) and

in type G, by A. M., E. Ragoucy and N. Rozhkovskaya (2016).



Explicit generators of the Feigin—Frenkel center were found in
type A by A. Chervov and D. Talalaev (2006),

in types B, C, D by A. M. (2013) and

in type G, by A. M., E. Ragoucy and N. Rozhkovskaya (2016).

This yields explicit higher Gaudin Hamiltonians in those cases

and reproduces Talalaev’s formulas in type A (2006).
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Higher Gaudin Hamiltonians in type A

A family of higher Gaudin Hamiltonians for g = gl arises from

the coefficients of the differential operators
w(@+Ew)*,  k=1,2,...

which form a commutative subalgebra of U(r'gly[r~1]).

Here E(u) = [E;(u)] is the matrix with the entries

Ej(u) =Y Eglrlu™""",  Elr] = Eyt"
r<0



Trigonometric Gaudin model
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Trigonometric Gaudin model

Now ¢~ !gly[r~!] is replaced by the extended Lie algebra
gt =0T e gy,

where b is the subalgebra of gl spanned by the elements E;
with i < j. Accordingly, E(u) is replaced by the matrix

LF(u) = [L] (w)] such that

En ... 2EN

0 Eny
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The coefficients of the series tr £+ (u)? are pairwise commuting

elements of U(g™) [Sklyanin (1987), Jurco (1989)].

As with the rational Gaudin model, this series is the generating
function for quadratic Hamiltonians: taking the image in the

tensor product of the vector representations, we get
LT (u) — ror(u/ay) + - - + ro(u/a;)

for some parameters a;, where

N 14x .
r(x) = Z ( T +sgn(]—l)) ejj ® eji.
ij=1
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The function r(x) is a trigonometric classical r-matrix. It

satisfies the classical Yang—Baxter equation
O125 [r2(x/x2),r3(x2/x3)] = 0
together with the skew-symmetry condition
ria(x) + r21(1/x) = 0.

Taking the residue at a;, we recover the i-th Gaudin Hamiltonian

+0,)02 — 9. A
urggi tr L7 (u)” = 2aq; 27; rij(ai/aj),
J71

assuming the parameters q; are all distinct and nonzero.
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Our goal is to construct higher order Hamiltonians for the
trigonometric Gaudin model. They are obtained from a

commuting family of elements of the algebra U(g™).

This commuting family is analogous to the one produced from

the differential operators tr(d, + E(u))":

the highest degree term of the corresponding operator

coincides with tr £ ().



Introduce the function T'(y) in a variable y with values in

End CY @ End C" by

N
1 1
T(y) = Zeii@)eii + li—y Ze,j®ej,~+ li—i—y Zelj®eji-
=l i<j i>j



Introduce the function T'(y) in a variable y with values in
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Introduce the function T'(y) in a variable y with values in
End CN ® EndC" by
N
T(y) = Z eij ® ejj + Z ejj @ eji + Z €ij & €ji-
i=1 i<j i>j
Forany 1 <a < b < s we let T,,(y) denote the function T(y)

regarded as an element of the algebra

EndC" ®...@ EndC" @U(g"),

N

associated with the a-th and b-th copies of End C" and as the

identity element in all the remaining tensor factors.



Define differential operators 6,, € U(g

generating function

o)
ngy Zy tr1 s 1s\Y )
m=1

[[u, 0,]] by means of the

Tia(y) Ly ... Ly,



Define differential operators 6,, € U(g™)[[«, d,]] by means of the

generating function

ngy Zy tr1 T 1s\Y )-~~T12(y)£1...£s,
m=1

where £ =2ud, — L (u) and the trace is taken over all s copies

of End C¥.



We have
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We have

0 =tr L =2Nud, —tr LT (u).

Furthermore,

0, = try 2 PiliLy = tI',C2 = tr(2u8,, — E+(u))2

=4Nu? 9y — 4u(te L (u) — N) Oy — 2utr LT () + tr LT (u)?



We have

O =tr L =2Nud, —tr LT (u).
Furthermore,
0 = tr 2 Pli Ly = tr L2 = tr(2ud, — L (1))’
=4Nu? 9y — 4u(te L (u) — N) Oy — 2utr LT () + tr LT (u)?
and

03 = tr(2ud, — LT (u —l—ngnz— )L ().

ij=1
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For any m > 1 the differential operator 6,, takes the form
O =0 M 4+ 00V g, + o

where each 9,(,5) is a power series in u with coefficients in the

algebra U(g™). In particular,
O = (—1)™tr £ (u)™ + lower degree terms.
This follows from the relation

trlv__js P 15.. P2 Ly...Ly=trL=1tr (2u8u — £+(M))S.
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Theorem [M.—Ragoucy 2018].
The coefficients of all power series o) generate a commutative

subalgebra of U(g™).

The commuting family quantizes the well-known Hamiltonians
tr L(u)™ of the classical trigonometric Gaudin model

[O. Babelon, C.-M. Viallet 1990, T. Skrypnyk 2007].
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Examples.
The commutative subalgebra contains the coefficients of the

power series tr LT (u)?,



Examples.

The commutative subalgebra contains the coefficients of the
power series tr LT (u)?, as well as the coefficients of the power
series

N
L) = 2ute L7 @)L () + > sen(j— )L ()L (w).

i,j=1
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Calculating classical limits

Begin with the Bethe subalgebra of the ¢-Yangian Y, (gly).

The algebra Y, (gly) is generated by elements
1;[_4, 1<i,j<N, r=0,1,...,

with the conditions that ;7 [0] = 0 for i > j and the elements ;0]

are invertible, subject to the defining relations
R(u/v)L{ (W)LY (v) = L ()L (w)R(u/v).
Here L* (u) = [ (v)] and

) => I =ru.
r=0

20



The R-matrix is given by

1—x
R(x) = Zeii ® e + P Zeii ® ejj
i i

(g—q")x q—q
+ =) i®eit+—— Y €@ e
q—q 'x ; YU g —gqx ; U

21



The R-matrix is given by

1—x
R(x) = Zeii®eii+m Zeii@)ejj

i#j
NCETEIES S PPN bl i S
-9 * 5 19 X5

Consider the g-permutation

P9 ¢ End (CY @ CV) = End CN ® End C" defined by

P4 :Zei,-®e,-,~+qZe,y@eﬁJrq_lZeij@eﬁ.

i i>j i<j

21



The symmetric group S, acts on the tensor product space

(CMY®k py 5, > P .= P!

warr fora=1,... k-1, where s,

denotes the transposition (a,a + 1).
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The symmetric group S, acts on the tensor product space
(CM)®K by s, > P, = PgaH fora=1,...,k— 1, where s,

denotes the transposition (a,a + 1).

Denote by A®) the image of the normalized antisymmetrizer

associated with the ¢g-permutations:

1
AR = o Z sgno - PZ.
’ o€y

22



Foreach k = 1,...,N consider the power series in u defined by

tr; G AOLE(u) .. L (ug™%F?)

77777

with the trace taken over all k copies of End C" in the tensor

product algebra

EndC" @ ... ® End C" @Y, (gly)[[u]].
k

It is well-known that the coefficients of all power series

generate a commutative subalgebra By of Y, (gly).

23



Another family of generators of this subalgebra can be obtained
from the Newton identities

[A. Chervov, G. Falqui, V. Rubtsov, A. Silantyev 2014].
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Another family of generators of this subalgebra can be obtained
from the Newton identities
[A. Chervov, G. Falqui, V. Rubtsov, A. Silantyev 2014].
They imply that the coefficients of all power series
)k P Lf(u) .. .L,j'(uq_sz), k=1,2,...

(kk—1,...,1)

belong to By.

Introduce the operator ¢ such that § g(u) = g(ug=?)4. Adjoining

this element to the algebra Y, (gly)[[u]], set M = LT (u) 4.

24



For each m > 1 consider the expression

| . .
Mm = W (1 - (Mm) )(Pm—lm _Pi—lm(Mm_l) >

s (P = PR T,
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For each m > 1 consider the expression

1 R R
Mm = W (1 - (Mm) )(Pm—lm - Pi—lm(Mm_l) )

s (P = PR T,

where the arrow indicates right multiplication:

(Paa+1 ~Pe, (Ma)_>> X:=P,,  X—P! XM

a aa+1 ar

25



For each m > 1 consider the expression

1 R R
Mm = W (1 - (Mm) )(Pm—lm - Pi—lm(Mm_l) )

s (P = PR T,

where the arrow indicates right multiplication:

—
(Panrl - Pc(lla+l(Ma) )X = Paa+1X - P;]aJrlXMa-

Take trace over all m copies of End CV:

25



Lemma. All coefficients of the polynomial tr, , M,, belong to

the algebra By/[[u]].
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Lemma. All coefficients of the polynomial tr, , M,, belong to
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Lemma. All coefficients of the polynomial tr, , M,, belong to

the algebra By/[[u]].

Calculate the classical limits ¢ — 1 of these elements. They will

form a commuting family of elements of the algebra U(g™).

26



Write

0=1-2(g—ud,+....

We have

LYw) =1+ (g— 1)L u) +...

and

l-M=(qg—1)L+...

with £ =2ud, — Lt (u).

27



Furthermore,

P—Pi=(q-1)T+...,
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Furthermore,

where

P—Pi=(q-1)T+...,

N
T = Z sgn(j— i)e,-j®ej,-.

ij=1
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Furthermore,

P—Pi=(q-1)T+...,

where
N
T= Z sgn(j — l) ejj X eji.
ij=1

The coefficients 6,, are then found by

Hm - trl,”.7mﬂm7
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Furthermore,

P—Pi=(q-1)T+...,
where

N
T = Z sgn(j— i)e,-j®ej,-.

ij=1

The coefficients 6,, are then found by

Hm - trl,...7mmm7

where M,, is the classical limit of the polynomial M,,.

28
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Invariants of the vacuum module

Consider the quantum affine algebra Uq(gT[N) in its RLL

presentation. We will need the normalized R-matrix

where, as before,

1—x
R(x) = Zeii X eii + m Zeii @ ejj
i i#

-1
—lx g ejj X eji + —1x g ejj X eji

i>j i<j

29



and

£ =1+ 3 filg)
k=1

30



and
f@) =1+ filg)2*
k=1

is a formal power series in x whose coefficients fi(q) are

rational functions in ¢ uniquely determined by the relation

o (L=xg?) (1 —xg?N )
f(xqu) =f(x) (1 —x)(1—xg?)

30



The quantum affine algebra Uq(g?[N) is generated by elements

" _ . .. _
l; [—1], l; 7] with 1 <i,j<N, r=0,1,...,
and the invertible central element ¢¢, subject to the defining

relations
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The quantum affine algebra Uq(g?[N) is generated by elements

z;[—r], L[] with 1 <i,j <N, r=0,1,...,

and the invertible central element ¢¢, subject to the defining

relations

L7[0] = 1;[0] = O for 1<i<j<N,

LF[0) 2 [0] = L [0] F[0] = 1 for i=1,...,N,

ii i



The quantum affine algebra UQ(QIN) is generated by elements

z;[—r], L [r] with 1 <i,j<N, r=0,1,..

)

and the invertible central element ¢¢, subject to the defining

relations

31



The vacuum module at the critical level ¢ = —N over Uq(gTIN) is
the universal module V,(gly) generated by a nonzero vector 1

subject to the conditions
L (u1=11,  ¢1=¢"1,

where I denotes the identity matrix.
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The vacuum module at the critical level ¢ = —N over Uq(gTIN) is
the universal module V,(gly) generated by a nonzero vector 1

subject to the conditions
L (u1=11,  ¢1=¢"1,
where I denotes the identity matrix.

As a vector space, V,(gly) can be identified with the subalgebra
Y, (gly) of Uq(gT[N) generated by the coefficients of all series

l;(u) subject to the additional relations £ [0] = 1.

32



The subspace of invariants of V,(gly) is defined by

30(8ly) = {v € Vy(aly) | L™ (u)v = ).
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The subspace of invariants of V,(gly) is defined by

30(8ly) = {v € Vy(aly) | L™ (u)v = ).

|dentify ;M(QT[N) with a subspace of Y, (gly).
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The subspace of invariants of V,(gly) is defined by
3q(aly) = {v € Vy(aly) | L (u)v = Iv}.
|dentify 5q(§[N> with a subspace of Y, (gly).

This subspace is closed under the multiplication in the quantum

affine algebra and can be regarded as a subalgebra of Y, (gly).
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Define differential operators 9,, € U(g

Z’ﬁmym:zystr] ,,,,, sTs—ls(y)---

“)llu, 0.]] by

T] 2<y) Z] ..

Ly,

34



Define differential operators 9,, € U(g")[[u, 8,]] by
Z’lgmy Zytrl Ts_ lsy)---T12<y)Zl---Zs7
m=1

where £ =2ud, — p — L (u) and p is the diagonal matrix

p=diag[N —1,N—=3,...,—N + 1].

34



Define differential operators 9,, € U(g™)|[u, 0,]] by
i'ﬂmy Zytrl Ts_ 15y)...T12(y)Zl...Zs,
m=1

where £ =2ud, — p — L (u) and p is the diagonal matrix

p=diag[N —1,N—=3,...,—N + 1].

The differential operator ¥,, takes the form

I = 08O 4 -+ 05V B, + 0,

where each 9% is a power series in U(g™)|[u]].
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Theorem [M.—Ragoucy 2018].
The coefficients of the power series 9 generate a

commutative subalgebra of U(g™).

35



Theorem [M.—Ragoucy 2018].
The coefficients of the power series 9 generate a

commutative subalgebra of U(g™).

Moreover, these coefficients belong to the algebra of invariants

5tr(§[N) of the vacuum module V,(gly).
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