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Invariants in the symmetric algebra

Let g be aLie algebra over C.
The adjoint action of g on itself extends to the symmetric

algebra S(g) by

k
Y- X, ...Xk:ZXl L YLX] L X
i=1

The subalgebra of invariants is

S(g)! ={PeS(g)|Y-P=0 forall Yeg}.
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Poisson commutative subalgebras

The symmetric algebra S(g) admits the Lie—Poisson bracket
l
{Xi.X;} =) cfX, X cg basiselements.
k=1

If g is a simple Lie algebra, then there exist invariants Py
such that S(g)? = C[Py,...,P,], wheren =rankg.

The subalgebra S(g)? C S(g) is Poisson commutative.

Integrability problem: Extend S(g)® to a big Poisson

commutative subalgebra of S(g).
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Let P = P(Xy,...,X;) be an element of S(g) of degree d.

Fix any . € g* and shift the arguments
X — X+ S,u(X,'),
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Let P = P(Xy,...,X;) be an element of S(g) of degree d.

Fix any . € g* and shift the arguments
X — X+ s,u(X,-),

where s is a variable:

P(Xy +sp(X)),.... X +sp(X))

=Py + Pays+ -+ Py s?.

Denote by A, the subalgebra of S(g) generated by all the

p-shifts P;) associated with all invariants P € S(g)®.



Properties:



Properties:

» The subalgebra A, is Poisson commutative for any x € g*

[A. Mishchenko and A. Fomenko, 1978].



Properties:

» The subalgebra A, is Poisson commutative for any x € g*

[A. Mishchenko and A. Fomenko, 1978].

» If € g* = gis regular, then A, is a free polynomial
algebra [A. Bolsinov, 1991;
B. Feigin, E. Frenkel and V. Toledano Laredo, 2010].



Properties:

» The subalgebra A, is Poisson commutative for any x € g*

[A. Mishchenko and A. Fomenko, 1978].

» If € g* = gis regular, then A, is a free polynomial
algebra [A. Bolsinov, 1991;
B. Feigin, E. Frenkel and V. Toledano Laredo, 2010].

» Moreover, A, is a maximal Poisson commutative

subalgebra of S(g) [D. Panyushev and O. Yakimova, 2008].
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Vinberg'’s problem

The universal enveloping algebra U(g) possesses a canonical
filtration such that the associated graded algebra is isomorphic

to the symmetric algebra, grU(g) = S(g).

E. B. Vinberg, 1990:

Is it possible to quantize the subalgebra A, of S(g)?

We would like to find a commutative subalgebra A,, of U(g)

(together with its free generators) such that gr. 4, = A,,.
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Approaches: Yangians

First construct a certain commutative subalgebra of U(g]t])

then use an evaluation homomorphism U(g(7]) — U(g).

The algebra U(g[7]) is a quasi-classical limit of
the Drinfeld Yangian Y(g). Construct a commutative subalgebra

of Y(g) known as the Bethe subalgebra.

In the classical types, a direct evaluation homomorphism from
the Olshanski twisted Yangians Y"(g) — U(g) can be used

[M. Nazarov and G. Olshanski, 1996].
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Vertex algebras

The Feigin—Frenkel center 3(g) is a certain

commutative subalgebra of U(r~'g[r']).
Given any p € g* and nonzero z € C the mapping
p: Xt"— X" +6, y p(X),

defines a homomorphism p : U(r~'g[r~']) — U(g).
The image A, of 3(g) is a commutative subalgebra of U(g).

FFTL-conjecture (2010): gr. A, = A,.
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Symmetrization map
The canonical symmetrization map

w :S(g) = U(g),

defined by

1
Wi Xt Xee 5 D Xo() - Xow

is a g-module isomorphism.

In particular, this gives a vector space isomorphism

w:S(g)? — Z(g).
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Conjecture [A.M. and O. Yakimova, 2017].
There exist free generators Hy, ..., H, of the algebra S(g)? such
that for any i € g* the w-images of their u-shifts generate the

algebra A,,.

Theorem 1. The conjecture holds for all classical Lie algebras.

Type A: [A. Tarasov, 2000, 2003].

Theorem 2. The FFTL-conjecture holds for types A and C.
Type A: [V. Futorny and A.M., 2015].
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Symmetrized minors and permanents

Let M be an N x N matrix with entries in an associative algebra.

Forany m = 1,...,N define the m-th symmetrized minor of M by

1
Detm<M) = % Z Z SgnoT 'Mag(l)a-r(l) . 'Maa(m)ar(m)‘

" <ai< - <am<N o,7€6,,

If the algebra is commutative then Det,, (M) is the sum of all

principal m-minors of M.
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For any m > 1 define the m-th symmetrized permanent of M by

Per,,(M) = % Z

T I<a< - <ansN
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For any m > 1 define the m-th symmetrized permanent of M by

Per,,(M) = % Z _

| |
. 1<t < <an<N Y1:-.-YN:

X Z Magyarqy -+ Mag gy ari:
U,TGGm

where ~; denotes the multiplicity of k € {1,...,N}

in the multiset {ai,...,an}.
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Type A

Take the Lie algebra gl with the basis {E;} and set

Ey ... Enn

ENl ENN

Regarding the E; as elements of S(gly), write
det(ul + E) = u" + ®1u 1 + ... + Dy

The coefficients ®1,...,®y are free generators of S(gly ).
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All coefficients W,, of the series

det(l —gE) ' =14+ U, qg+ U4 +...

belongto S(gly)® and Vy,..., Uy are its free generators.

We have

®,, = Det,,(E) and U,, = Per,,(E).

This follows by taking the Chevalley images.
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For u € gly set pn; = pu(E;) and consider the matrix

Hip oo Hiy

Byp --- HNN

The p-shifts of the invariants ®,, and ¥,, are found as the

coefficients of the polynomials

Det,,(E + s 1) and Per,,(E + s ).
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Lemma.
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Lemma. Under the symmetrization map we have
w : Dety,(E + s ) — Dety,(E + s 1)

and

w : Pery,(E + s ) — Per,,(E + s p),

where we assume that Ej; € S(gly) on the left

and E; € U(gly) on the right.
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Suppose that € gly, is arbitrary.
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Theorem [Tarasov, 2000, 2003; M., Yakimova, 2017].
Suppose that ;. € gl is arbitrary. The subalgebra A, C U(gly)

is generated by the coefficients of each family of polynomials
Det,, (E + s 1) and Per,,(E + s )
withm =1,...,N.

Proof. Use the generators of the Feigin—Frenkel center 3(5[1\,)
found by [A. Chervov and D. Talalaev, 2006] and

[A. Chervov and A. M., 2009] to get explicit generators of A,,.
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Types B, C and D

Define the orthogonal Lie algebra oy with N = 2n and
N = 2n+ 1 and symplectic Lie algebra spy with N = 2n as

subalgebras of gly spanned by the elements F;;,
Fij:Eij_Ej’i’ or Fij:Eij_EiEjEj’i’-

We use the involution i — i’ =N — i+ 1 onthe set {1,...,N},

and in the symplectic case set

g =



Introduce the matrix



Introduce the matrix

Fi



Introduce the matrix
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Introduce the matrix

Fi. ... Fin

Fyvi ... Fyy

Taking N = 2n and regarding F;; as elements of S(sp,,), write
det(ul + F) = u®" 4+ ®ru” 2 4 - + Dy,

The coefficients ®,, ®y, ..., dy, are free generators

of the algebra S(sp,, ).



The invariants ¥,,, € S(oy)°" are defined by
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The invariants ¥,,, € S(oy)°" are defined by
det(l —gF) ' =14+ W+ Vuqg* +....
Uy, Uy,...,U,, are free generators of S(o0g,41)%+!.

For N = 2n define the Pfaffian by

1
)

PfF =
€Sy,

Uy, Wy, ..., Wy, o, PfF are free generators of S(0,,)%".

> 80 Foqyotay - Fon-1)o(any-

20



For even values of m we have

®,, = Det,,(F) and

U,, = Pery,(F).
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For even values of m we have
®,, = Det,,(F) and U,, = Per,,(F).
For u e g* set w; = pu(F;) and consider the matrix

S P S

By - MNN

The u-shifts of the invariants are the coefficients of the

polynomials Pf(F + su) (for o0y,) and

Det,,(F + s 1) and Per,,(F + s ).

21
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Theorem [M., Yakimova, 2017].

Suppose that i € g* is arbitrary.

» The coefficients of the polynomials Det,,(F + s 1) with

m=2,4,...,2n generate the algebra A, in type C.

» The coefficients of the polynomials Per,,(F + s 1) with

m = 2,4,...,2n generate the algebra 4, in type B.

» The coefficients of the polynomials Pf (F + s ) and
Per,,(F + s u) for the values m = 2.4,...,2n — 2 generate

the algebra A, in type D.

22
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Free generators of A,: type A

Suppose that the distinct eigenvalues of i are Ay, ..., A,
To each ); associate the Young diagram a()) whose rows are

the sizes of the Jordan blocks with the eigenvalue ;.

Introduce another Young diagram by

the sum is taken by rows.
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Write the numbers 1,2, ..., N consecutively from left to right in
the boxes of each row of the Young diagram II beginning from

the top row.
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Write the numbers 1,2, ..., N consecutively from left to right in
the boxes of each row of the Young diagram II beginning from

the top row.
Foreach m € {1,...,N} define r(m) as the row number of m.
Introduce another Young diagram by

o=(r(N)=1,....r(1) = 1).

24



Example. For IT = (3,2, 1) we have

23]

‘O\-lk»—
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Example. For IT = (3,2, 1) we have
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Example. For IT = (3,2, 1) we have

23]

‘O\-lk»—
[,

Therefore

0= (2, 17 1)

25



Associate the coefficients

with boxes of the diagram I' =

®,,, of the polynomials Det,,(E + s 1)

(N,N—1,...,1) by
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Associate the coefficients ®,,; of the polynomials Det,,(E + s )

with boxes of the diagram I = (N, N — , 1) by
PyN-1 Pyy—2 ... Py Pyo
Py N2 Py N3 ... Py_10
r =
@ P20

D9

26
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Theorem [Futorny, M., 2015; M., Yakimova, 2017].

The elements ®,,, corresponding to the boxes of the skew

diagram I'/ ¢ are free generators of the subalgebra A,,.

Moreover, the FFTL-conjecture holds:
the subalgebra 4, is a quantization of .4, so that

grA, = A,
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with the associated Young diagrams

H . |
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Example. Take N = 6 and let i have two distinct eigenvalues

with the associated Young diagrams
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Example. Take N = 6 and let i have two distinct eigenvalues

with the associated Young diagrams
H |

ThenII = (3,2,1)sothat o = (2,1,1)and I'/p is

Thus we exclude ®gs, gy, P54 and dy45.

28



Example. If pis regular, then it is associated with row

diagrams o).
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Example. If pis regular, then it is associated with row
diagrams (9. Hence, ¢ = @ and all elements @, , are

algebraically independent.

Example. If uis a scalar matrix then o= (N —1,N —2,...

The skew diagram I'/p is

]

L]

Thus ‘AH =C [‘I)l(), oy (I)NO} = Z(g[N)

1)

29
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Free generators of A,,: type C

The nonzero eigenvalues of ;. occur in pairs (A, —A) which
correspond to the same Young diagram. Moreover, the Young
diagram corresponding to the zero eigenvalue has the property

that each row of odd length occurs an even number of times.
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Free generators of A,,: type C

The nonzero eigenvalues of ;. occur in pairs (A, —A) which
correspond to the same Young diagram. Moreover, the Young
diagram corresponding to the zero eigenvalue has the property

that each row of odd length occurs an even number of times.

Let oV, ..., " be the diagrams associated with the distinct

eigenvalues \q, ..., \,.

Introduce the Young diagram II by

30



Write the numbers 1,2, ..., 2n consecutively from left to right in
the boxes of each row of the Young diagram II beginning from

the top row.
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Write the numbers 1,2, ..., 2n consecutively from left to right in
the boxes of each row of the Young diagram II beginning from

the top row.

Foreach m € {1,...,n} define r(2m) as the row number of 2m.
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Write the numbers 1,2, ..., 2n consecutively from left to right in
the boxes of each row of the Young diagram II beginning from

the top row.
Foreach m € {1,...,n} define r(2m) as the row number of 2m.
Introduce the Young diagram o by

o= (r@2n)—1,...,r(2) = 1).

31



Associate the coefficients ®,,,, of the polynomials
Det,,, (F + s 1v) with boxes of the diagram I = (2n,2n — 2,...,2)

by
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Associate the coefficients ®,,,, of the polynomials
Det,,, (F + s 1v) with boxes of the diagram I = (2n,2n — 2,...,2)

by
Doyon—1 Drp20—2 - D2 Doy Pono

Doy—200—3 boy20p—a ... Dr,20

Doy ®r
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Theorem [M., Yakimova, 2017].
The elements ®,,,, corresponding to the boxes of the skew

diagram I'/ ¢ are free generators of the subalgebra A,,.
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Theorem [M., Yakimova, 2017].
The elements ®,,,, corresponding to the boxes of the skew

diagram I'/ ¢ are free generators of the subalgebra A,,.

Moreover, the FFTL-conjecture holds:
the subalgebra 4, is a quantization of .4, so that

grA, =A,.
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Example. Inthe case of regular ; we have p = @ and all

elements ®,, , are algebraically independent.
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Example. Inthe case of regular ; we have p = @ and all

elements ®,, , are algebraically independent.

Example. lfu=0thenpo=(2n—-1,2n—-3,...,1)and A, is
the center of the universal enveloping algebra U(sp,, ).

It is freely generated by the elements ®,¢, @4, ..., P2,0.

34
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Outline of the proof
For any simple Lie algebra g and any i € g* = g we have
A, CU(g) = gr A, C S(g)%,

where g, is the centralizer of pin g.
On the other hand,
A, CgrA,.

In types A and C:
A, is a maximal Poisson commutative subalgebra of S(g)%.

Hence gr A, = A,.
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