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In the Beginning

I S — compact single generator
(monothetic) semigroup.
(r , s) → r .s continuous (joint
continuity) =⇒ ∃! idempotent.
This is the unit for a compact
group K — kernel of the
semigroup.

I What happens if r → r .s0 and
s → r0.s are continuous for all
r0, s0 ∈ S (separate continuity)?
Trevor West showed there can be
more than one idempotent.

I (B & M 1971): The idempotent subsemigroup of a compact
separately continuous monothetic semigroup can be an
arbitrary lower semilattice.



Measure Algebras

I Algebra of measures M(T) on circle
T = {e2πit : t ∈ [0, 1)}

I Look at complex homomorphisms ∆ =
{χ : M(T) → C : χ homomorphism}.

I χ ∈ ∆ corresponds to (χµ)µ∈M(T)

where χµ ∈ L∞(µ):
∆µ = {χµ : χ ∈ ∆}

I West used measure on Kronecker set K :

D
∆
= cl{e2πint : n ∈ Z} = unit ball of C (K )

In general D ⊂ ∆µ

I (Joe Taylor, Barry Johnson) ∃ singular measures such that
χµ(t) = ae2πint for some n ∈ Z, a ∈ C, ∀χ ∈ ∆ (tameness)



Infinite Convolutions

I Bernoulli convolutions: µ = F∞
n=1

1
2

(
δ(−an) + δ(an)

)
I More generally:

µ = F∞
n=1

(∑
k,n

ak,nδ(xk,n)
)

(1)

I (B& M) Many Bernoulli convolutions are tame — arithmetical
constraints on an’s.

I Leads to monothetic semigroup result

I (B & M) Structure of ∆µ for Bernoulli convolutions

I Monotrochic: |χµ| constant for all χ ∈ ∆

I (B & M) Measures of form (1) are monotrochic
I (B & M) µ of form (1) implies one of following is true:

I µ is discrete
I µn ∈ L1(T) for some n
I µn ⊥ µm for n 6= m



Orsay and Indiana

Brown

I Silov boundary is a proper
subset of ∆0 — maximal
ideal space of M0(T)

I dµ(t) =
∏

n(1 +
an cos 2π(rnt + φn))dm(t)
(rn+1/rn > 3, an ≥ 0)

I Riesz products are tame, etc

Moran

I Silov boundary is a proper
subset of ∆0

I F : {z : |z | ≤ 1} → C
continuous &
F (µ̂(n)) = ν̂(n)∀n. What
does this say about F?

I If µ on Kronecker set then F
analytic, etc



Orthogonality of Riesz Products

I Let

dµ(t) =
∏
n

(1 + an cos(2πrnt + φn)).dm(t)

dν(t) =
∏
n

(1 + bn cos(2πrnt + ψn)).dm(t)

I (Jacques Peyriére) If
∑

n |ane
2πiφn − bne

2πiψn |2 = ∞ then
µ ⊥ ν.

I (B & M) If
∑

n
|ane2πiφn−bne2πiψn |2

2−|ane2πiφn+bne2πiψn | <∞ then ν ∼ µ.



M0, Boundaries, and Gleason Parts

I M0(T): measures µ whose Fourier transform

µ̂(n) =

∫
T

e−2πint dµ(t) (2)

vanishes at infinity.

I ∆0 = ∆(M0) is an open subset of ∆

I A Boundary is a subset B of ∆ such that for every µ ∈ M
there exists φ ∈ B

|φ(µ)| = sup
ψ∈∆

|ψ(µ)| (3)

I (B & M) All boundaries for M0 are boundaries for M

I (B & M) Characterise Gleason parts of measure algebras
(Miller’s Conjecture)



Measures on Cantor Sets and Woodall’s Inequality

I Lebesgue: Let C be the classical
(“middle-third”) Cantor set on
[0, 1]. Then C + C = [0, 2].

I Conjecture (B & M) If A is a set of
positive Cantor measure (µc) then
A + A is a set of positive Lebesgue
measure (m). Reduced it to:

I Woodall:

xaya + max{xa(1− y)a, ya(1− x)a}+ (1− x)a(1− y)a ≥ 1

(0 ≤ x , y ≤ 1), a = (log 3)/(log 4)

I (B & M) m(E + F ) ≥ 2µc(E )aµc(F )a.



Normality and Riesz Products

I Schmidt’s Theorem: m, n positive
integers (> 1) then ∃ real numbers x
s. t. x is normal in base m but not in
base n provided 6 ∃ solution to nr = ms

in integers r , s

I Original proof of Schmidt: effectively
find infinite convolution measure µm,n

s.t. x is normal in base m but not in
base n almost surely wrt µm,n

I (B, M, Charles Pearce) Construct
Riesz product µm,n
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A Month in Cambridge

I Schmidt’s conjecture: Let S , T be r × r rational matrices
which are ergodic — ie almost all (wrt Lebesgue measure)
x ∈ Rr are normal wrt S and T .

I Can we find x ∈ Rr normal in base T but not normal in base
S?

I Normal means T nx is uniformly distributed modulo 1 in each
coordinate.

I (B& M) If S and T commute
Schmidt’s conjecture is true.

I (B& M) If S and T are 2× 2 and
have real eigenvalues Schmidt’s
conjecture is true.



Enter Andy

I (B,M, Andy Pollington) Schmidt’s conjecture is true in 2
dimensions

I In 1 dimension, free n and m from being integers — just reals
α, β > 1.

I Let B(α) be all numbers x normal in base β — ie βnx
uniformly distributed modulo 1.

I Theorem (B,M, Pollington)

1. B(βr ) ⊂ B(βs) (r 6= s) ⇐⇒ ∃K : βK ∈ N &
Q(βr ) ⊂ Q(βs) or βK + β−K ∈ N

2. B(λ) ⊂ B(τ) =⇒ ∃β, r , s : λ = βr , τ = βs & 1. above holds
3. B(λ) = B(τ) ⇐⇒ Q(λ) = Q(τ),

log λ/ log τ ∈ Q, & ∃K : λK ∈ N



And now for something completely different

General Problem
Several evolving systems viewed in different ways under our control.
Knowledge of systems and measurements have uncertainty. How to
schedule measurements to minimize uncertainty?

Simple Example

I R systems with linear dynamics:

x
(r)
n = Fx

(r)
n−1 + w

(r)
n

w
(r)
n is gaussian, mean 0, covariance Σw(r)

I Linear measurements:

y
(r)
n = Hkx

(r)
n + v

(r ,k)
n

v
(r ,k)
n gaussian noise, covariance Σv(r,k)



Gauss-Markov Systems

I Suppose only one system and one measurement — H1:
Kalman filter gives optimal solution: minimum variance
unbiased estimator for state xn at time n based on all
measurements y1, y2, . . . , yn

I Suppose one system and K measurements: find choice
Hπ(1),Hπ(2), . . . ,Hπ(n) at time n to minimize summed (traces
or determinants) of covariances of Kalman estimators at all
times up to n

I Can be done offline — do not need to know state since
covariance of estimator is a function of covariances Σw, Σv(k) ,
and F (Kalman)

I But how to do it?



Even Simpler Problem

I Two one dimensional systems — states x
(r)
n and measurements

y
(r ,k)
n (r = 1, 2) are one dimensional, linear maps are scalars

I Only two kinds of measurements — one of which is not to
measure.

I Only need to track variances of estimators

I u
(1)
n , u

(2)
n are variances for systems at time n.

I Asssume systems have same process noise and measurements
have same measurement variance for each system.

I After some normalisations:

u
(1)
n = u

(1)
n−1 + 1

u
(2)
n =

u
(2)
n−1 + 1

cu
(2)
n−1 + c + 1

if we measure system 2, and roles reversed if we measure
system 1.
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I Cost function is

CN(u, π) =
N∑

n=1

u
(1)
n + u

(2)
n

where π is a sequence in
∏N

n=1{1, 2}
I Find choice of π to minimise cost.



The solution



More Generally



Scheduling for HMMs

Hidden Markov Model

I S — state space — finite — size M

I P — stochastic transition matrix (M×M)

I T — measurement matrix (R ×M)

I ∆ — probability distributions on S

Other definitions

I Sn — state at time n

I Zn — measurement at time n

I P(∆) — probability measures on ∆



Hidden Markov Models



Multiple Measurements

I Different measurement matrices T(k)

I Cost function: Minimize uncertainty of next state of system
given measurements: H(Sn+1|Zn)

I Stationary: Make choice of measurement depend only on
information state πn — probability vector in ∆

I Can estimate information state from previous measurements
— Bayes Rule update

I Find long term minimal cost — limn H(Sn+1|Zn) based on a
stationary policy



Hidden Markov Models



Description and Notation

I πn — posterior distribution of Sn at time n: πn = p(Sn|Zn−1);

I πn+1 — posterior distribution of Sn at time n + 1:

πn+1 = p(Sn|Zn) = f (k)(z , πn) =
πnD

(k)(z)P

πnD(k)(z)1
,

where D(k)(z) — diagonal matrix with dii (z) = T (k)[i , z ].

I Entropy rate for the state of the process:

lim
n→∞

H(Sn|Zn−1) = lim
n→∞

∫
∆

h(πn)dµn(πn) =

∫
∆

h(π)dµ(π).



HMM Scheduling
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HMM Scheduling



Iterative Formula

I Distribution µ(.) obtained
iteratively

µn+1(πn+1) =

∫
∆

φ(k)(πn)dπn

where

φ(k)(π) =∑
z

(πT (k))zδ(f
(k)(z , π))

maps ∆ → P(∆)

I Starting from
µ0 = δ(ν), π0 = ν

I Generate sets
{πn}i , i = 1, . . . , |Z |n and
prob. distribution µn(πn).

I Entropy Rate

Hn =

|Z |n∑
i=1

µn(πn,i )h(πn,i ).



Stationary Policy

I A stationary policy is a partition τ = {B1,B2, . . .BM} of the

state space ∆ by Borel sets;
M⋃
i=1

Bi = ∆.

I Define
φτ (π) =

∑
k

φ(k)(π)χ(Bk).

I Permits the definition of a map P(∆) to P(∆):

Φ(τ)(µ) =

∫
∆
φτ (π)dµ(π) =

∑
k

∫
Bk

φ(k)(π)dµ(π).



The Objective

I Find a policy τ? such that

H(τ?) =

∫
∆

h(π)dµτ
?
(π) = inf

τ
H(τ).



Existence and Uniqueness of the Stationary Distribution

I Under suitable conditions on τ , Φ(τ) is a continuous convex
map on the compact convex set P(∆) — has a fixed point:

µτ (π) = Φ(τ)(µτ (π)).

I To form a fixed point

ρτN(µ) =
1

N + 1

N∑
n=0

(Φτ )n(µ).

I Need to show independence of

lim ρτN(δ(π))

from π to prove uniqueness.



Invariant Measure Lemma
The entropy rate of the state process is equivalent to:

H(τ) =

∫
∆

h(φτ (π))dµτ (π) =

∫
∆

h(π)dΦ(τ)(µτ (π)),

where h(ν) =
∫

hdν for ν ∈ P(∆).



The OPC Conjecture — Introduction

I Overflow loss networks: large and important class of loss
networks (e.g. telephone networks).

I Exact performance solutions not scalable and only apply to
cases where dimensionality is very small.

I Approximations required to estimate blocking probability

I Most used technique: Erlang
Fixed-Point Approximation ( 1964)

I A new approximation called
Overflow Priority Classification
Approximation (OPCA) proposed
(Zukerman et. al.) to improve
EFPA.



The OPC Conjecture: Statement

I For simple and pure overflow loss network, numerical results
show that the blocking estimated by OPCA (i.e. POPCA) lies
between those estimated by the exact solution (i.e. Pexact)
and by EFPA (i.e. PEFPA):

Pexact ≥ POPCA ≥ PEFPA

I Second inequality relatively easy to
prove; first difficult — POPCA is a
very good approximation to Pexact



The Gory Details

POPCA = 1−
∑N−1

n=0 a(n)

a
[
1 +

∑N−1
n=0 a(n)

] =
(a− 1)

∑N−1
n=0 a(n) + a

a
[
1 +

∑N−1
n=0 a(n)

]
where

a(n) =

[∑n−1
i=0 a(i)

]2

1 +
∑n−1

i=0 a(i)
−

n−1∑
i=1

a(i) =
(a− 1)

∑n−1
i=0 a(i) + a

1 +
∑n−1

i=0 a(i)

and a(0) = a. The blocking probability for the Erlang B exact
solution

Pexact =
(Na)N

N!∑N
n=0

(Na)n

n!

Theorem
(M, Wong, Zalesky, Zukerman)

Pexact ≥ POPCA ∀N


