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Abstract

We show that an integrable lattice equation, obtained by J. Hietarinta using the “consistency around a

cube” method without the tetrahedron assumption, is indeed solvable by linearisation. We present also

its nonautonomous extension.
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1. Introduction

Constructing integrable lattice equations is a procedure which is both delicate and not necessarily system-

atic. Two main approaches have been successfully used over the years. The first one is indeed constructive

[1]. One starts from some spectral problem, introducing a Lax pair (usually, a family thereof) and derives

all integrable equations which are associated to this linear problem. While this method has the advan-

tage of leading to systems which are integrable by construction, it is not useful when it comes to dealing

with lattice equations which are obtained from some physical models and are thus given a priori. The

second method is tailored so as to deal with the latter situation. It is based on detection rather than

construction. Given a lattice equation one applies one (or, better, several) integrability detectors [2,3]

and if the system satisfies all integrability criteria one can confidently postulate its integrability. The

drawback of this method lies, of course, in the fact that it does not provide a proof of integrability and

one must in principle complement the study of the system by actually integrating it.

While integration with spectral methods, based on the existence of Lax pairs is the usual way of integrating

a given integrable evolution or lattice equation, there exists another type of integrability (often ignored).

Calogero [4] has coined the term c-integrability for the latter, and what he means by this is that the

system can be reduced to a linear one through the help of a Cole-Hopf type tranformation. Thus, while

integrability with spectral method of an evolution equation (s-integrability in the sense of Calogero) leads

to a linear integrodifferential system, in the case of c-integrability the linear system is a purely differential

one. As we have shown in [5] integrability through linearisation does not require the Painlevé property

(for differential systems) or singularity confinement (for discrete ones). The aim of the present paper is

to analyse a system obtained by Hietarinta [6] who has proposed its integrability through Lax pairs. We

shall show that the system is much simpler than what was implied and provide its explicit reduction to

a linear equation.

In [6] Hietarinta has examined critically the work of Adler, Bobenko and Suris [7] who have generated

families of integrable lattice equations based on the “consistency around a cube” (CAC) approach [8].

The main idea of this method is the following. One starts from a two-dimensional square lattice, define

the variable on the vertices xn,m, xn,m+1, xn+1,m, xn+1,m+1 and write the multilinear equation relating

these variables. In this way, solving for xn+1,m+1 gives a rational expression of the other x’s. For the

CAC trick one adjoins a third direction, say k, and imagine the mapping giving xn+1,m+1,k+1 as being the

composition of mappings on the various planes. There exist three different ways to obtain xn+1,m+1,k+1

and the consistency requirement is that they lead to the same result. This places severe constraints on the

multilinear equation but they do not suffice to determine it completely. Adler, Bobenko and Suris have

introduced two additional assumptions. They considered only a certain class of symmetrical forms for the

multilinear equation and also they required that xn+1,m+1,k+1 be independent of xn,m,k (the tetrahedron

property). Under the constraints of these simplifying assumptions they were able to produce a complete

classification of lattice systems. The latter are all integrable, since the procedure also furnishes their Lax

pairs.

Hietarinta questioned these assumptions and produced one integrable lattice equation which did not make

use of the tetrahedron property. He also obtained the Lax pair for this system but as we shall show in

the next section the integrability of this lattice equation is of a much simpler type.
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2. Hietarinta’s lattice equation

The lattice equation of Hietarinta has the form:

xn,m + b

xn,m + a

xn+1,m+1 + d

xn+1,m+1 + c
=

xn+1,m + b

xn+1,m + c

xn,m+1 + d

xn,m+1 + a
(1)

Our first approach to equation (1) is, in the ARS [9] spirit, through its reductions. The simplest nontrivial

reduction of (1) is obtained from the periodicity condition xn+1,m+1 = xn,m. We readily find the mapping

(omitting the second index):
xn+1 + b

xn+1 + c

xn−1 + d

xn−1 + a
=

xn + b

xn + a

xn + d

xn + c
(2)

Next, we study the integrability of this equation using the algebraic entropy method [3]. For this we

compute the degree growth of the numerator and denominator of the iterates of (2) in terms of the initial

conditions. We find that the degree of the nth iterate grows like dn = n. According to our results in [10]

not only is (2) integrable but moreover it is a linearisable mapping. An elementary calculation shows

that (2) can be reduced to the homographic mapping:

xn+1 =
xn((bd − ac) + (c − b)k) + ad(b − c) + (cd − ab)k

(d − a)(xn + k)
(3)

where k is an integration constant. This is a highly nontrivial result and it leads to the hypothesis that

the full system (1) might be linearisable. This turns out to be the case indeed. As a complementary

indication we have computed the degree growth of the iterates of the mapping (1) and we found again

linear growth, reinforcing thus the linearisability hypothesis.

In order to linearise the lattice we start by a homographic transformation. We set

xn,m =
d − cyn,m

yn,m − 1
(4)

and obtain the lattice equation

yn+1,m+1(yn,m + B)(yn,m+1 + A) = yn,m+1(yn,m + A)(yn+1,m + B) (5)

where B = (d − b)/(b − c), A = (d − a)/(a − c). Next, we remark that (5) can be put in the form:

Vn+1,m

Vn,m

=
Un,m

Un,m+1
(6)

where Vn,m = yn,m+1/(yn,m + B) and Un,m = yn,m + A. Equation (6) in turn can be parametrised

by Vn,m = Qn,m/Qn,m+1. Introducing Wn,m = Qn+1,m/Qn,m we find Wn,m/Wn,m+1 = Un,m/Un,m+1.

The solution of the latter is Un,m = f(n)Wn,m, with f a free function of n, leading to yn,m + A =

f(n)Qn+1,m/Qn,m and yn,m+1/(yn,m + B) = Qn,m/Qn,m+1. Since only f(n) appears in the definition of

y through a term f(n)Qn+1,m/Qn,m it is clear that it can be absorbed by a gauge transformation of Q

and thus we can simply omit it. Eliminating y we obtain finally

Qn+1,m+1 − AQn,m+1 − Qn+1,m + (A − B)Qn,m = 0 (7)

i.e., a linear equation for Q. Solving (7) we can obtain y and thus reconstitute x.
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The reduction of the lattice equation (1) to the form (5) was very helpful for its linearisation. It is

interesting to note that an equation of the form (5) can be obtained as a limit of (1). Indeed, taking

d → 0, c → ∞ we find:

xn+1,m+1(xn,m + b)(xn,m+1 + a) = xn,m+1(xn,m + a)(xn+1,m + b) (8)

which is exactly (5) with y = x, A = a, B = b.

At this point one may wonder what is the consequence of the linearisability on the Lax pair. In [6]

Hieratinta has given the Lax pair for (1). In order to simplify the presentation, we analyse below the Lax

pair for equation (8), which is obtained from that of (1) by taking d → 0, c → ∞. This does not change

anything in the argument but does simplify the computations. We have:

L1(n, m) =

( µ−a

xn,m+a

µa

xn,m+a
−

µxn+1,m

xn,m

0 −
xn+1,m

xn,m

)

(9)

L2(n, m) =

(

(µ−b)xn,m+1

xn,m+b

µbxn,m+1

xn,m+b

0
µxn,m+1

xn,m

)

and the lattice equation is obtained from the compatibility relation

L2(n, m + 1)L1(n, m) = L1(n + 1, m)L2(n, m) (10)

Since the lattice equation is independent of the spectral parameters λ, µ, we have simplified further L1

and L2 by taking λ=0. Next we introduce the expression of x in terms of the quantity appearing in the

linear equation, xn,m = Qn+1,m/Qn,m − a and obtain for Q the equation:

Qn+2,m+1(Qn+1,m+(b−a)Qn,m)−Qn+1,m+1(Qn+2,m+bQn+1,m+a(b−a)Qn,m)+aQn,m+1(Qn+2,m+(b−a)Qn+1,m) = 0

(11)

It is then straightforward to show that (11) is a consequence of the linear equation Qn+1,m+1−aQn,m+1−

Qn+1,m + (a − b)Qn,m = 0.

Finally one can wonder what are the (integrable) nonautonomous forms of the lattice equation (1). The

answer to this question is straightforward if we start from the linear equation for Q

Qn+1,m+1 + fn,mQn,m+1 + gn,mQn+1,m + hn,mQn,m = 0 (12)

We assume now that f , g and h are free functions of n and m. Next we introduce the nonlinear variable

xn,m = Qn,m+1/Qn,m and upshift (12) in the m direction and eliminate Q. We find thus

(xn+1,m+1 + fn,m+1)xn+1,m(gn,mxn,m + hn,m) = (xn+1,m + fn,m)xn,m(gn,m+1xn,m+1 + hn,m+1) (13)

In order to bring (13) under the form of (1) we may perform a homographic transformation consisting

in a translation, an inversion of the dependent variable followed by a new translation. A total freedom

exists at the homography level and two new free functions can thus be introduced leading to the most

general nonautonomous form of (1).

3. Conclusion
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In this paper we have presentend what we called the “deconstruction” of a lattice equation. Namely,

starting from a given equation, the integrability of which was already established, we decided to probe

deeper and thus discovered that its integrability was of a simpler nature than the one implied in the

original paper. This raises an interesting question: is this an exceptional feature pertinent only to the

equation at hand or is this a common feature for the equations derived by the CAC principle without

the tetrahedron assumption? Clearly the analysis of more examples is necessary before this question can

be settled.
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