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Abstract—A fundamental task in wireless communication is chan-
nel estimation: Compute the channel parameters a signal undergoes
while traveling from a transmitter to a receiver. In the case of
delay-Doppler channel, a widely used method is the matched filter
algorithm. It uses a pseudo-random sequence of length N, and,
in case of non-trivial relative velocity between transmitter and
receiver, its computational complexity is O(N2 logN). In this paper
we introduce a novel approach of designing sequences that allow
faster channel estimation. Using group representation techniques we
construct sequences, which enable us to introduce a new algorithm,
called the flag method, that significantly improves the matched
filter algorithm. The flag method finds the channel parameters in
O(m · N logN) operations, for channel of sparsity m. We discuss
applications of the flag method to GPS, radar system, and mobile
communication as well.

Index Terms—Channel estimation, time-frequency shift problem,
fast matched filter, flag method, sequence design, Heisenberg–Weil
sequences, fast moving users, high-frequency communication, radar,
GPS.

I. INTRODUCTION

A BASIC step in many wireless communication protocols
[16] is channel estimation: learning the channel parameters

a signal undergoes while traveling from a transmitter to a receiver.
In this paper we develop an efficient algorithm for delay-Doppler
(also called time-frequency) channel estimation. Our algorithm
provides a striking improvement over current methods in the
presence of high relative velocity between a transmitter and a
receiver. The latter scenario occurs in GPS, radar systems, mobile
communication of fast moving users, and very high frequency
(GHz) communication.

Throughout this paper we denote by H = C(ZN ) the vec-
tor space of complex valued functions on the set of integers
ZN = {0, 1, ..., N−1} equipped with addition and multiplication
modulo N. We assume that N is an odd prime number. The vector
space H is endowed with the inner product

〈f1, f2〉 =
∑

n∈ZN
f1[n]f2[n],

for f1, f2 ∈ H, and referred to as the Hilbert space of (digital)
sequences.
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Let us start with example.

A. Example: The GPS Problem
A client on the earth surface wants to know his/her geo-

graphical location. The Global Positioning System (GPS) was
built to fulfill this task. Its mathematical model works as follows
[12]. Satellites send to earth their location—see Figure 1 for
illustration.

Fig. 1. Satellites communicate location in GPS.

For simplicity, the location of a satellite is a bit b ∈ {±1}. The
satellite transmits to the earth its sequence S ∈ H of norm one
multiplied by its location b. We assume, for simplicity, that the
sequence travels through only one path. Hence, the client receives
the sequence R ∈ H of the form1

R[n] = b · α0 · e
2πi
N ω0·n · S[n+ τ0] +W[n], (I-A.1)

where α0 ∈ C is the complex amplitude, with |α0| ≤ 1, ω0 ∈ ZN
encodes the radial velocity of the satellite with respect to the
client, τ0 ∈ ZN encodes the distance between the satellite and
the client2, andW is a random white noise3. The problem of GPS

1We denote i =
√
−1.

2Using τ0 we can compute [12] the distance from the satellite to the client,
assuming a line of sight between them.

3In this paper, a random white noise will always be assumed to have mean
zero.
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can be formulated as follows:

Problem I-A.1 (The GPS Problem): Design S ∈ H, and an
effective method of extracting (b, τ0) from S and R satisfying
(I-A.1).

In practice, the satellite transmits S = S1 + b · S2, where
S1, S2 are almost orthogonal in some appropriate sense. Then
(α0, τ0, ω0), and (b · α0, τ0, ω0) are computed using S1, and
S2, respectively, concluding with the derivation of the bit b. A
client can compute his/her location by knowing the locations of
at least three satellites and distances to them. The GPS problem
is an example of channel estimation task. We would like now to
describe the more general channel estimation problem that we are
going to solve.

B. Channel Estimation Problem
We consider the following mathematical model of time-

frequency channel estimation [16]. There exists a collection of
users, each one holds a sequence from H known to a base
station (receiver). The users transmit their sequences to the base
station. Due to multipath effects—see Figure 2 for illustration—
the sequences undergo [15], [16] several time-frequency shifts
as a result of reflections from various obstacles. We make the
standard assumption of almost-orthogonality between sequences
of different users. Hence, if a user transmits S ∈ H, then the base
station receives R ∈ H of the form

R[n] =

m∑
k=1

αk · e
2πi
N ωk·n ·S[n+ τk] +W[n], n ∈ ZN , (I-B.1)

where m denotes the number of paths the transmitted sequence
traveled, αk ∈ C is the complex multipath amplitude along path k,
with

∑m
k=1 |αk|

2 ≤ 1, ωk ∈ ZN depends on the relative velocity
along path k of the transmitter with respect to a base station,
τk ∈ ZN encodes the delay along path k, and W ∈ H denotes a
random white noise. The parameter m will be called the sparsity
of the channel. The objective is:

Problem I-B.1 (The Channel Estimatiom Problem): Design
S ∈ H, and an effective method of extracting the channel
parameters (αk, τk, ωk), k = 1, ...,m, from S and R satisfying
(I-B.1).

To suggest a solution to Problem I-B.1, we start with a simpler
variant.

C. The Time-Frequency Shift (TFS) Problem
Suppose the transmitter and the receiver sequences S,R ∈ H

are related by

R[n] = e
2πi
N ω0·n · S[n+ τ0] +W[n], n ∈ ZN , (I-C.1)

where W ∈ H denotes a random white noise, and (τ0, ω0) ∈
ZN × ZN . The pair (τ0, ω0) is called the time-frequency shift,
and the vector space V = ZN × ZN is called the time-frequency
plane. We would like to solve the following:

Problem I-C.1 (Time-Frequency Shift (TFS)): Design S ∈
H, and an effective method of extracting the time-frequency shift
(τ0, ω0) from S and R satisfying (I-C.1).

Fig. 2. Three paths scenario.

D. The Matched Filter (MF) Algorithm

A classical solution [6], [8], [9], [11], [16], [17], [18] to
Problem I-C.1, is the matched filter algorithm. We define the
following matched filter (MF) matrix of R and S:

M(R,S)[τ , ω] =
〈
R[n], e

2πi
N ω·n · S[n+ τ ]

〉
, (τ , ω) ∈ V.

A direct verification shows that for ζ0 = e
2πi
N (τω0−ωτ0), with

probability one, we have

M(R,S)[τ , ω] = ζ0 · M(S, S)[τ − τ0, ω − ω0]

+O(
NSR√
N

),

where NSR ≈ 1
SNR , i.e., essentially4 the inverse of the signal-

to-noise ratio between the sequences S and W. For simplicity,
we assume, for the rest of the paper, that the NSR is of size
O(1). In order to extract the time-frequency shift (τ0, ω0), it is
“standard”5 (see [6], [8], [9], [11], [16], [17], [18]) to use pseudo-
random sequence S ∈ H of norm one. In this case M(S, S)[τ −
τ0, ω − ω0] = 1 for (τ , ω) = (τ0, ω0), and of order O( 1√

N
) if

(τ , ω) 6= (τ0, ω0). Hence,

M(R,S)[τ , ω] =

{
1 + εN , if (τ , ω) = (τ0, ω0);
εN , if (τ , ω) 6= (τ0, ω0),

(I-D.1)

where εN = O( 1√
N

).

Identity (I-D.1)—see Figure 3 for a demonstration—suggests
the following “entry-by-entry” solution to TFS problem: Com-
pute the matrix M(R,S), and choose (τ0, ω0) for which
M(R,S)[τ0, ω0] ≈ 1. However, this solution of TFS problem
is significantly expensive in terms of arithmetic complexity, i.e.,
the number of multiplication and addition operations is O(N3).
One can do better using a “line-by-line” computation. This is due
to the next observation.

4The precise relation is NSR =
√
2 log logN
SNR

by the law of the iterated
logarithm.

5For example in spread-spectrum communication systems.
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Fig. 3. |M(R,S)| with pseudo-random S, and (τ0, ω0) = (50, 50).

Remark I-D.1 (FFT): The restriction of the matrix M(R,S)
to any line (not necessarily through the origin) in the time-
frequency plane V, is a convolution that can be computed, using
the fast Fourier transform (FFT), in O(N logN) operations. For

details see Section V.
As a consequence of Remark I-D.1, one can solve TFS

problem in O(N2 logN) operations.

E. The Fast Matched Filter (FMF) Problem

To the best of our knowledge, the “line-by-line” computation
is also the fastest known method [14]. If N is large this may not
suffice. For example in applications to GPS [1], as in Problem
I-A.1 above, we have N ≥ 1000. This leads to the following:

Problem I-E.1 (The Fast Matched Filter Problem): Solve
the TFS problem in almost linear complexity.

Note that computing one entry in M(R,S) already takes
O(N) operations.

F. The Flag Method

In this paper we introduce the flag method to propose a solution
to FMF problem. The idea is, first, to find a line on which the
time-frequency shift is located, and, then, to search on the line
to find the time-frequency shift. We associate with the N + 1
lines Lj , j = 1, ..., N + 1, through the origin in V, a system
of “almost orthogonal” sequences SLj ∈ H, that we call flags.
They satisfy—see Figure 4 for illustration—the following “flag
property”6: For a sequence R given by (I-C.1) with S = SLj , we
have

M(R,SLj )[τ , ω] (I-F.1)

=


2 + εN , if (τ , ω) = (τ0, ω0);
1 + εN , in |·| if (τ , ω) ∈ L′j r (τ0, ω0);
εN , if (τ , ω) ∈ V r L′j ,

where εN = O( 1√
N

), |·| denotes absolute value, and L′j is
the shifted line Lj + (τ0, ω0). The “almost orthogonality” of
sequences means

∣∣M(SLi , SLj )[τ , ω]
∣∣ = O( 1√

N
), for every

(τ , ω), i 6= j.

Fig. 4. |M(R,SL)| for a flag SL with L = {(0, ω)}, and (τ0, ω0) = (50, 50).

In addition, for SL and R satisfying (I-F.1), we have the
following search method to solve FMF problem:

Flag Algorithm

Step 1. Choose a line L⊥ transversal to L.
Step 2. Compute M(R,SL) on L⊥. Find (τ , ω) such that

|M(R,SL)[τ , ω]| ≈ 1, i.e., (τ , ω) on the shifted line
L+ (τ0, ω0).

Step 3. Compute M(R,SL) on L + (τ0, ω0) and find (τ , ω)
such that |M(R,SL)[τ , ω]| ≈ 2.

The complexity of the flag algorithm—see Figure 5 for a
demonstration—is O(N logN), using the FFT.

Fig. 5. Diagram of flag algorithm.

This completes our solution of Problem I-E.1—The Fast
Matched Filter Problem.

G. Solution to the GPS and Channel Estimation Problems
Let L ⊂ V be a line through the origin.

Definition I-G.1 (Genericity): We say that the points
(τk, ωk) ∈ V, k = 1, ...,m, are L-generic if no two of them lie
on a shift of L, i.e., on L+ v, for some v ∈ V.

6In linear algebra, a pair (`0, L) consisting of a line L ⊂ V, and a point
`0 ∈ L, is called a flag.
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Looking back to Problem I-B.1, we see that, under genericity
assumptions, the flag method provides a fast computation, in
O(m ·N logN) operations, of the channel parameters of channel
with sparsity m In particular, it calculates the GPS parameters—
see Problem I-A.1—in O(N logN) operations. Indeed, Identity
(I-F.1), together with the almost orthogonality between flag
sequences, implies that

αk ≈M(R,SL)[τk, ωk]/2, k = 1, ...,m,

where R is the sequence (I-B.1), with S = SL, assuming that and
(τk, ωk)’s are L-generic. So we can adjust the flag algorithm as
follows:

• Compute M(R,SL) on L⊥. Find all (τ , ω)’s such that
|M(R,SL)[τ , ω]| is sufficiently large, i.e., find all the shifted
lines L+ (τk, ωk)’s.

• Compute M(R,SL) on each line L + (τk, ωk), and find
(τ , ω) such that |M(R,SL)[τ , ω]| is maximal on that line,
i.e., (τ , ω) = (τk, ωk) and αk ≈M(R,SL)[τk, ωk]/2.

Figure 6 provides a visual illustration for the matched filter
matrix in three paths scenario.

Fig. 6. |M(R,SL)| , for L = {(0, ω)}, and (αk, τk, ωk) = ( 1√
3
, 50k, 50k),

k = 1, 2, 3.

This completes our solutions of Problem I-B.1—The Channel
Estimation Problem, and of Problem I-A.1—The GPS Problem.

H. Applications to Radar and Mobile Communication

The flag method provides a significant improvement over the
current channel estimation algorithms in the presence of high
velocities. The latter occurs in systems such as GPS, radar, and
mobile communication of fast moving users. In Subsection I-A,
we described the GPS problem, and in Subsection I-G its effective
solution using the flag method. It is easy to see that the flag
method suggests a solution to the GPS problem also in the
multipath scenario. In this section we demonstrate application of
the flag method to radar, and mobile communication.

1) Application to Radar: The model of radar works as
follows [11]. A radar transmits—Figure 7 illustrates the case of
one target—a sequence S ∈ H which bounces back from m
targets. The sequence R ∈ H which is received as an echo has

the form

R[n] =

m∑
k=1

αk · e
2πi
N ωk·n · S[n+ τk] +W[n], n ∈ ZN ,

where αk ∈ C is the complex multipath amplitude along path k,
with

∑m
k=1 |αk|

2 ≤ 1, ωk ∈ ZN encodes the radial velocity of
target k with respect to the radar, τk ∈ ZN encodes the distance
between target k and the radar, and W is a random white noise.

In order to determine the location of the targets we need to
solve [13] the following.

Problem I-H.1 (The Radar Problem): Having R and S, com-
pute the parameters (τk, ωk), k = 1, ...,m.

This is essentially the channel estimation problem. Under the
genericity assumption, the flag method solves it in O(m·N logN)
operations. This completes our solution to Problem I-H.1—The
Radar Problem.

Fig. 7. Radar transmits wave and recieves echo.

2) Application to Mobile Communication: The model of
mobile communication works as follows [16]. A user wants to
deliver a bit of information b ∈ {±1} to a base station. The
base station assigns a sequence S ∈ H to the user, and the user
transmits to the base station the sequence b · S. The sequence
R ∈ H which is received by the base station is of the form

R[n] = b ·
m∑
k=1

αk · e
2πi
N ωk·n · S[n+ τk] +W[n], n ∈ ZN ,

where m denotes the number of paths the transmitted sequence
traveled, αk ∈ C is the multipath amplitude along path k, with∑m
k=1 |αk|

2 ≤ 1, ωk ∈ ZN depends on the relative velocity along
path k of the user with respect to the base station, τk ∈ ZN is the
delay along path k, and W ∈ H denotes a random white noise.
The main task at the base station is the following:

Problem I-H.2 (The Mobile Communication Problem):
Having R and S, compute the bit b.

In practice, first the user sends S, and the channel estimation
is done. Then the bit b is communicated by sending b ·S. Finally,
knowing the channel parameters (αk, τk, ωk), k = 1, ...,m, the
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bit is extracted using the formula7

b ·
m∑
k=1

|αk|2 ≈ 〈R,
m∑
k=1

αk · e
2πi
N ωk·n · S[n+ τk]〉.

The main computational step is the channel estimation which is
done by flag method in O(m·N logN) operations. This completes
our solution to Problem I-H.2—The Mobile Communication
Problem.

I. What you can find in this paper
• In Section I: You can read about the flag method for effec-

tive delay-Doppler channel estimation. In addition, concrete
applications to GPS, radar, and mobile communication are
discussed.

• In Section II: You can find the definition and explicit formu-
las for the Heisenberg and Weil operators. These operators
are our basic tool in the development of the flag method, in
general, and the flag sequences, in particular.

• In Section III: You can see the design of the Heisenberg–
Weil flag sequences, using the Heisenberg–Weil operators,
and diagonalization techniques of commuting operators. In
addition, the investigation of the correlation properties of the
flag sequences is done in this section. These properties are
formulated in Theorem III-C.1, which guarantees applicabil-
ity of the Heisenberg-Weil sequences to the flag method.

• In Section IV: You can get explicit formulas for large col-
lection of the Heisenberg–Weil flag sequences. In particular,
these formulas enable to generate the sequences using low
complexity algorithm.

• In Section V: You can find the formulas that suggest fast
computation of the matched filter matrix on any line in
the time-frequency plane. These formulas are of crucial
importance for the effectiveness of the flag method.

• In Section VI: You can find needed proofs and justifications
for all the claims and formulas that appear in the body of
the paper.
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II. THE HEISENBERG AND WEIL OPERATORS

The flag sequences (see Subsection I-F) are defined, con-
structed and analyzed using two special classes of operators that
act on the Hilbert space of digital sequences. The first class
consists of the Heisenberg operators and is a generalization of the

7It is analogous to data modulation using a delay-Doppler rake receiver in
spread-spectrum systems [16].

time-shift and frequency-shift operators. The second class consists
of the Weil operators and is a generalization of the discrete Fourier
transform. In this section we recall the definitions and explicit
formulas of these operators.

A. The Heisenberg Operators
The Heisenberg operators are the unitary transformations that

act on the Hilbert space of digital sequences by{
π(τ , ω) : H → H, τ , ω ∈ ZN ;

[π(τ , ω)f ][n] = e
2πi
N ω·n · f [n+ τ ],

(II-A.1)

for every f ∈ H, n ∈ ZN .

B. The Weil Operators
Consider the discrete Fourier transform

DFT : H → H,

[DFT (f)][ω] = 1√
N

N−1∑
n=0

e−
2πi
N ω·n · f [n],

for every f ∈ H, ω ∈ ZN . It is easy to check that DFT satisfies
the following N2 identities:

DFT ◦ π(τ , ω) = π(−ω, τ) ◦DFT, τ , ω ∈ ZN , (II-B.1)

where π(τ , ω) are the Heisenberg operators, and ◦ denotes com-
position of transformations. A version of the celebrated Stone–von
Neumann (S–vN) theorem implies that up to scalar multiple the
DFT is the unique operator that satisfies (II-B.1). This means that
(II-B.1) is a characterization of the DFT. In [19] Weil generalized
this method and defined many other operators that act on H.
Consider the following collection of matrices

SL2(ZN ) =

{(
a b
c d

)
; a, b, c, d ∈ ZN , and ad− bc = 1

}
.

Note that G = SL2(ZN ) is a group [2] with respect to the
operation of matrix multiplication. It is called the special linear
group of order two over ZN . Each element

g =

(
a b
c d

)
∈ G,

acts on the time-frequency plane V = ZN × ZN via the change
of coordinates

(τ , ω) 7→ g · (τ , ω) = (aτ + bω, cτ + dω).

For g ∈ G, let ρ(g) be a linear operator on H which is a solution
of the following system of N2 linear equations:

Σg : ρ(g)◦π(τ , ω) = π(g · (τ , ω))◦ρ(g), τ , ω ∈ ZN , (II-B.2)

Denote by Sol(Σg) the space of all solutions to System (II-B.2).
For example for

w =

(
0 −1
1 0

)
,

which is called the Weyl element, we have by (II-B.1) that DFT ∈
Sol(Σw). The general version of the S–vN theorem implies that
dim Sol(Σg) = 1, for every g ∈ G. In fact there exists a special
set of solutions. This is the content of the following result [19]:
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Theorem II-B.1 (Weil operators): There exists a unique col-
lection of solutions {ρ(g) ∈ Sol(Σg); g ∈ G}, which are unitary
operators, and satisfy the homomorphism condition ρ(g · h) =
ρ(g) ◦ ρ(h), for every g, h ∈ G.

Denote by U(H) the collection of all unitary operators on the
Hilbert space H of digital sequences. Theorem II-B.1 establishes
the map

ρ : G→ U(H), (II-B.3)

which is called the Weil representation [19]. We will call each
ρ(g), g ∈ G, a Weil operator.

1) Formulas for Weil Operators: It will be important for our
study to have the following [5], [7] explicit formulas for the Weil
operators:
• Fourier. We have[

ρ

(
0 −1
1 0

)
f

]
[n] = i

N−1
2 ·DFT (f)[n]; (II-B.4)

• Chirp. We have[
ρ

(
1 0
c 1

)
f

]
[n] = e

2πi
N (−2−1cn2) · f [n]; (II-B.5)

• Scaling. We have[
ρ

(
a 0
0 a−1

)
f

]
[n] =

(
a

N

)
f [a−1n], (II-B.6)

for every f ∈ H, 0 6= a, c, n ∈ ZN , where
(
a
N

)
is the Legendre

symbol which is equal to 1 if a is a square modulo N, and −1
otherwise, and in (II-B.5) we denote 2−1 = N+1

2 the inverse of
2 modulo N.

The group G admits [3] the Bruhat decomposition

G = UA ∪ UwUA,

where U ⊂ G denotes the unipotent subgroup

U =

{(
1 0
c 1

)
; c ∈ ZN

}
,

and A ⊂ G denotes the diagonal subgroup

A =

{(
a 0
0 a−1

)
; 0 6= a ∈ ZN

}
. (II-B.7)

This means that every element g ∈ G can be written in the form

g = u · s or g = u′ · w · u′′ · s′

where u, u′, u′′ ∈ U, s, s′ ∈ A, and w is the Weyl element. Hence,
because ρ is homomorphism, i.e., ρ(g ·h) = ρ(g)◦ρ(h) for every
g, h ∈ G, we deduce that formulas (II-B.4), (II-B.5), and (II-B.6),
extend to describe all the Weil operators.

III. SEQUENCE DESIGN: HEISENBERG–WEIL FLAGS

The flag sequences, that play the main role in the flag method,
are of a special type. Each of them is a sum of a pseudorandom
sequence and a structural sequence. The first has the MF matrix
which is almost delta function at the origin, and the MF matrix of
the second is supported on a line. The design of these sequences
is done using group representation theory. The pseudorandom
sequences are designed [8], [9], [18] using the Weil representation

operators (II-B.3), and will be called Weil (spike) sequences8. The
structural sequences are designed [10], [11] using the Heisenberg
representation operators (II-A.1), and will be called Heisenberg
(line) sequences. We call the collection of all flag sequences, the
Heisenberg–Weil flag system. In this section we study construc-
tions, and properties of these sequences.

A. The Heisenberg (Lines) System
The operators (II-A.1) obey the Heisenberg commutation

relations

π(τ , ω) ◦ π(τ ′, ω′) = e
2πi
N (τω′−ωτ ′) · π(τ ′, ω′) ◦ π(τ , ω).

The expression τω′ − ωτ ′ vanishes if (τ , ω), (τ ′, ω′) are on the
same line through the origin. Hence, for a given line L ⊂ V =
ZN ×ZN we have a commutative collection of unitary operators

π(`) : H → H, ` ∈ L. (III-A.1)

Explicit version of simultaneous diagonalization theorem from
linear algebra implies [10], [11] the existence of a natural or-
thonormal basis BL for H consisting of common eigensequences
for all the operators (III-A.1){

BL = {fLψ};
π(`)fLψ = ψ(`)fLψ , ` ∈ L,

where ψ runs over characters of L, i.e., functions ψ : L→ C∗ =
C − 0, with ψ(` + `′) = ψ(`)ψ(`′), for every `, `′ ∈ L. The
system of all such bases BL, where L runs over all lines through
the origin in V, will be called the Heisenberg (lines) system. We
use the following result [10], [11]:

Theorem III-A.1: The Heisenberg system satisfies the follow-
ing properties:

1) Line. For every line L ⊂ V , and every fL ∈ BL, we have

M(fL, fL)[τ , ω] =

 1, if (τ , ω) = (0, 0);
1, in |·| if (τ , ω) ∈ Lr (0, 0);
0, if (τ , ω) /∈ L.

2) Almost-orthogonality. For every two lines L1 6= L2 ⊂ V ,
and every fL1 ∈ BL1 , fL2 ∈ BL2 , we have

|M(fL1 , fL2)[τ , ω]| = 1√
N
,

for every (τ , ω) ∈ V.

Figure 8 demonstrates Property 1 of Theorem III-A.1 for the
diagonal line.

B. The Weil (Spikes) System
The group G = SL2(ZN ) is non-commutative, but contains a

special class of maximal commutative subgroups called tori9 [8],
[9], [3]. Each torus T ⊂ G acts via the Weil operators

ρ(g) : H → H, g ∈ T. (III-B.1)

8For the purpose of the Flag method, other pseudorandom signals may work.
9There are order of N2 tori in SL2(ZN ).
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Fig. 8. |M(fL, fL)| for L = {(τ , τ))}.

This is a commutative collection of diagonalizable operators, and
it admits [8], [9] a natural orthonormal basis BT for H, consisting
of common eigensequences for all the operators (III-B.1){

BT = {ϕTχ};
ρ(g)ϕTχ = χ(g)ϕTχ , g ∈ T, (III-B.2)

where χ runs over characters of T , i.e., functions χ : T → C∗
with χ(g · g′) = χ(g)χ(g′), for every g, g′ ∈ T.

Remark III-B.1: There is a small abuse of notation in III-B.2.
There are two types of tori in G, split tori and non-split tori
[8], [9]. In each case, the torus T admits a unique non-trivial
character χq of T—called the quadratic character—which takes
the values χq(g) ∈ {±1}, g ∈ T. The dimension of the space
Hχq of sequences ϕTχq , which satisfy ρ(g)ϕTχq = χq(g)ϕTχq is
equal to 2 or 0, if T is a split or non-split torus, respectively [8],
[9].

Let us denote by

ST = BT rHχq ,

the set of sequences in BT , which are not associated with the
quadratic character. The system of all such sets ST , where T
runs over all tori in G, will be called the Weil (spikes) system.
We use the following result [8], [9]:

Theorem III-B.2: The Weil system satisfies the following
properties:

1) Spike. For every torus T ⊂ G, and every ϕT ∈ ST , we
have

M(ϕT , ϕT )[τ , ω] =

{
1, if (τ , ω) = (0, 0);
≤ 2√

N
, in |·| if (τ , ω) 6= (0, 0).

2) Almost-orthogonality. For every two tori T1, T2 ⊂ G, and
every ϕT1

∈ ST1
, ϕT2

∈ ST2
, with ϕT1

6= ϕT2
, we have

∣∣M(ϕT1
, ϕT2

)[τ , ω]
∣∣ ≤ { 4√

N
, if T1 6= T2;

2√
N
, if T1 = T2,

for every (τ , ω) ∈ V.

Figure 9 illustrates Property 1 of Theorem III-B.2, applied to
the commutative subgroup of diagonal matrices in G.

Fig. 9. M[ϕT , ϕT ] for T = {
(
a 0
0 a−1

)
; 0 6= a ∈ ZN}.

C. The Heisenberg–Weil System

We define the Heisenberg–Weil system of sequences. This is
the collection of sequences in H, which are of the form SL =
fL + ϕT , where fL and ϕT are Heisenberg and Weil sequences,
respectively. The main technical result of this paper is:

Theorem III-C.1: The Heisenberg–Weil system satisfies the
properties

1) Flag. For every line L ⊂ V , torus T ⊂ G, and every flag
SL = fL + ϕT , with fL ∈ BL, ϕT ∈ ST , we have

M(SL, SL)[τ , ω] =

 2 + εN , if (τ , ω) = (0, 0);
1 + εN , in |·| if (τ , ω) ∈ Lr (0, 0);
εN , if (τ , ω) ∈ V r L,

where |εN | ≤ 4√
N
, and |εN | ≤ 6√

N
.

2) Almost-orthogonality. For every two lines L1 6= L2 ⊂ V ,
tori T1, T2 ⊂ G, and every two flags SLj = fLj + ϕTj ,
with fLj ∈ BLj , ϕTj ∈ STj , j = 1, 2, ϕT1

6= ϕT2
, we have

|M(SL1
, SL2

)[τ , ω]| ≤

{
9√
N
, if T1 6= T2;

7√
N
, if T1 = T2,

for every (τ , ω) ∈ V.

For a proof of Theorem III-C.1 see Subsection VI-A.

Figure 10 demonstrates Property 1 of Theorem III-C.1 applied
to the diagonal line L and a torus T as in Figure 9.

Remark III-C.2: As a consequence of Theorem III-C.1 we ob-
tain families of N+1 almost-orthogonal flag sequences which can
be used for solving the TFS problem in O(N logN) operations,
and GPS, channel estimation, radar, and mobile communication
problems in O(m · N logN) operations for channel of sparsity
m.

This completes our design of the Heisenberg–Weil flag se-
quences.
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Fig. 10. |M[SL, SL]| for Heisenberg–Weil flag with L = {(τ , τ)}.

IV. FORMULAS FOR HEISENBERG–WEIL SEQUENCES

In order to implement the flag method it is important to have
explicit formulas for the Heisenberg and Weil sequences, which
in particular enable one to generate them with a low complexity
procedure. In this section we supply such effective description
for all Heisenberg sequences, and for Weil sequences associated
with split tori

A. Formulas for Heisenberg Sequences
First we parametrize the lines in the time-frequency plane, and

then we provide explicit formulas for the orthonormal bases of
sequences associated with the lines.

1) Parametrization of Lines: The N + 1 lines in the time-
frequency plane V = ZN×ZN can be described in terms of their
slopes. We have

• Lines with finite slope. These are the lines of the form
Lc =span{(1, c)}, c ∈ ZN .

• Line with infinite slope. This is the line L∞ =span{(0, 1)}.

2) Formulas: Using the above parametrization, we obtain

• Formulas for Heisenberg sequences associated with lines of
finite slope. For c ∈ ZN we have the orthonormal basis

BLc = {fc,b[n] =
1√
N
e

2πi
N (−2−1cn2+bn) ; b ∈ ZN},

of Heisenberg sequences associated with the line Lc.

• Formulas for Heisenberg sequences associated with the line
of infinite slope. We have the orthonormal basis

BL∞ = {δb; b ∈ ZN},

of Heisenberg sequences associated with the line L∞, where
the δb’s denote the Dirac delta functions.

B. Formulas for the Weil Sequences
We describe explicit formulas for the Weil sequences associ-

ated with split tori [6], [8], [9]. First we parametrize the split tori
in G = SL2(ZN ), and then we write the explicit expressions for
the orthonormal bases of sequences associated with these tori.

1) Parametrization of Split Tori: A commutative subgroup
T ⊂ G is called split torus [3] if for some g ∈ G it is of the
form T = Tg, with

Tg = g ·A · g−1,

where A ⊂ G is the subgroup of all diagonal matrices, also called
the standard torus, i.e.,

A =

{(
a 0
0 a−1

)
; 0 6= a ∈ ZN

}
.

We denote by T = {Tg; g ∈ G} the set of all split tori in G. It is
not hard to verify that the number of elements in T is N(N+1)

2 .
A direct computation shows that the collection of all Tg’s with

g =

(
1 b
c 1 + bc

)
, b, c ∈ ZN , (IV-B.1)

exhausts the set T . Moreover, in (IV-B.1) the torus Tg can be
written also as Tg′ , for g 6= g′, only if b 6= 0 and

g′ =

(
1 b
c 1 + bc

)(
0 −b
b−1 0

)
.

2) Formulas: In order to provide the explicit formulas we
need to develop some basic facts and notations from the theory
of multiplicative characters [2]. Consider the group Z∗N of all non-
zero elements in ZN , with multiplication modulo N. A basic fact
about this group is that it is cyclic, i.e., there exists an element
r ∈ Z∗N such that

Z∗N = {1, r, r2, ..., rN−2}.

A function χ : Z∗N → C∗ is called multiplicative character if
χ(x · y) = χ(x) · χ(y) for every x, y ∈ Z∗N . A way to write
formulas for such functions is the following. Choose ζ ∈ C which
satisfies ζN−1 = 1, i.e., ζ ∈ µN−1 = {e

2πi
N−1k; k = 0, ..., N −2},

and define a multiplicative character by

χζ(r
d) = ζd, d = 0, 1, ..., N − 2.

Running over all the N − 1 possible such ζ’s, we obtain all the
multiplicative characters of Z∗N . We are ready to write, in terms
of the parametrization (IV-B.1), the concrete eigensequences
associated with each of the tori (see Subsection III-B). We obtain

• Formulas for Weil sequences associated with the diagonal
torus. For the diagonal torus A we have

SA =
{
ϕχζ ; − 1 6= ζ ∈ µN−1

}
,

where ϕχζ ∈ H is the sequence defined by

ϕχζ [n] =

{ 1√
N−1

χζ [n] if n 6= 0,

0 if n = 0.
(IV-B.2)

• Formulas for Weil sequences associated with the torus Tuc ,
for unipotent uc ∈ G. For the torus Tuc associated with the
unipotent element

uc =

(
1 0
c 1

)
, c ∈ ZN ,
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we have

STuc =
{
ϕχucζ ; − 1 6= ζ ∈ µN−1

}
,

where ϕχucζ ∈ H is the sequence defined by

ϕχucζ [n] = e
2πi
N (−2−1cn2) · ϕχζ [n], (IV-B.3)

for every n ∈ ZN , and ϕχζ is the sequence given by
(IV-B.2).

• Formulas for Weil sequences associated with the torus Tg,
for non-unipotent g ∈ G. For the torus Tg associated with
the element

g =

(
1 b
c 1 + bc

)
, b, c ∈ ZN , b 6= 0,

we have

STg =
{
ϕχgζ ; − 1 6= ζ ∈ µN−1

}
,

where ϕχgζ ∈ H is the sequence defined by

ϕχgζ [n] = Cb ·
e

2πi
N (2−1 1+bc

b n2)

√
N

× (IV-B.4)

×
∑
ω∈ZN

e
2πi
N ω·n ·

[
e

2πi
N (−2−1bω2) · ϕχζ [bω]

]
,

for every n ∈ ZN , and ϕχζ the sequence given by (IV-B.2),

Cb = i−
N−1

2

(
b
N

)
, with

( ·
N

)
the Legendre symbol.

The validity of Formula (IV-B.2) is immediate from Identity
(II-B.6). For a verification of Formulas (IV-B.3) and (IV-B.4), see
Subsection VI-B.

Remark IV-B.1 (Complexity of Heisenberg-Weil sequences):
For concrete applications it is important to have low arithmetic
complexity algorithm generating the sequences. Note that the
sequence (IV-B.4) can be computed in O(N logN) operations
using FFT. We conclude that the all Heisenberg sequences, and
all Weil sequences associated with split tori, and in particular
the associated flag sequence, can be computed in at most
O(N logN) operations.

V. COMPUTING THE MATCHED FILTER ON A LINE

Implementing the flag method, we need to compute in
O(N logN) operations the restriction of the MF matrix to any
line in the time-frequency plane (see Remark I-D.1). In this
section we provide algorithm that fulfills this task. The upshot
is—see Figure 11 for illustration of the case of the diagonal
line—that the restriction of the MF matrix to a line is a certain
convolution that can be computed fast using FFT. Denote by
M(ϕ, φ)[τ , ω] = 〈ϕ, π(τ , ω)φ〉 the matched filter associated
with sequences ϕ, φ ∈ H, and by ϕ ∗ φ ∈ H their convolution

(ϕ ∗ φ) [τ ] =
∑
n∈ZN

ϕ−[n] · φτ [n], (V-.1)

where ϕ−[n] = ϕ[−n], and φτ [n] = φ[τ + n], for every τ , n ∈
ZN .

We consider two cases:

1) Formula on lines with finite slope and their shifts. For
c ∈ ZN consider the line Lc = {τ · (1, c) ; τ ∈ ZN}, and
for a fixed ω ∈ ZN the shifted line L′c = Lc + (0, ω). On
L′c we have

M(ϕ, φ)[τ · (1, c) + (0, ω)] (V-.2)
=

[
mexp(2−1cn2+ωn)ϕ− ∗mexp(−2−1cn2)φ

]
[τ ],

where
[
mexp(2−1cn2+ωn)ϕ−

]
[n] = e

2πi
N (2−1cn2+ωn) ×

ϕ−[n], n ∈ ZN , and similar definition for the second
expression, with φ the complex conjugate of the sequence
φ.

2) Formula on the line with infinite slope and its shifts.
Consider the line L∞ = {ω · (0, 1) ; ω ∈ ZN}, and for
a fixed τ ∈ ZN the shifted line L′∞ = L∞ + (τ , 0). On
L′∞ we have

M(ϕ, φ)[ω · (0, 1) + (τ , 0)] = DFT (ϕ · φτ )[ω], (V-.3)

for every ω ∈ ZN .

The validity of Formula (V-.3) is immediate from the definition
of the matched filter. For a verification of Formula (V-.2) see
Subsection VI-C.

Fig. 11. M(ϕ, φ)[τ , τ ] =
[
mexp(2−1n2)ϕ− ∗mexp(−2−1n2)φ

]
[τ ] on L1.

VI. PROOFS

A. Proof of Theorem III-C.1
1) Flag Property: Let SL = fL + ϕT . We have

M(SL, SL) = M(fL, fL) +M(fL, ϕT )

+M(ϕT , fL) +M(ϕT , ϕT ).

We will show that

|M(ϕT , fL)[τ , ω]| ≤ 2√
N
, τ, ω ∈ ZN . (VI-A.1)

Noting that M(fL, ϕT )[τ , ω] = M(ϕT , fL)[−τ ,−ω] we get
from (VI-A.1) also the same bound for M(fL, ϕT ). Having
this, using Theorems III-A.1 and III-B.2 we can deduce the Flag
Property. So assume π(`)fL = ψ(`)fL for ` ∈ L. We proceed in
several steps:
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Step 1. For every v ∈ V we have π(v)fL ∈ BL. Indeed, for
` ∈ L we have

π(`)[π(v)fL] = e
2πi
N (−Ω(`,v))π(v)π(`)fL

= e
2πi
N (−Ω(`,v))ψ(`)[π(v)fL],

where Ω : V × V → ZN is the symplectic form
Ω[(τ , ω), (τ ′, ω′)] = τω′−ωτ ′. Namely, π(v)fL is eigensequence
for π(`) with character ψv(`) = e

2πi
N (−Ω(`,v))ψ(`).

By step 1, it is enough to bound the inner product

|〈ϕT , fL〉| ≤
2√
N
. (VI-A.2)

Step 2. The bound (VI-A.1) holds for L∞. Indeed, then fL∞ =
δb for some b ∈ ZN , hence

|〈ϕT , fL∞〉| = |ϕT [b]| ≤ sup
n∈ZN

|ϕT [n]|.

In [9] it was shown that for every Weil sequence ϕT we have

sup
n∈ZN

|ϕT [n]| ≤ 2√
N
.

Step 3. The bound (VI-A.1) holds for every line L. We will
use two lemmas. First, let L,M ⊂ V be two lines, and g ∈ G
such that gL = {g ·` ; ` ∈ L} = M. For a character ψ : L→ C∗,
define the character ψg : M → C∗, by ψg(g ·`) = ψ(`), for every
` ∈ L. We have

Lemma VI-A.1: Suppose fL is a ψ-eigensequence for L, i.e.,
π(`)fL = ψ(`)fL, for every ` ∈ L. Then the sequence fM =
ρ(g)fL is ψg-eigensequence for M.

For a proof of Lemma VI-A.1, see Subsection VI-A1a.

For the second lemma, consider a torus T ⊂ G, and an element
g ∈ G. Then we can define a new torus Tg = gTg−1 = {g·h·g−1;
h ∈ T}. For a character χ : T → C∗, we can associate a character
χg : Tg → C∗, by χg(g · h · g−1) = χ(h), for every h ∈ T. We
have

Lemma VI-A.2: Suppose ϕT is a χ-eigensequence for T, i.e.,
ρ(h)ϕT = χ(h)ϕT , for every h ∈ T. Then the sequence ϕTg =
ρ(g)ϕT is χg-eigensequence for Tg.

For a proof of Lemma VI-A.2, see Subsection VI-A1b.

Now we can verify Step 3. Indeed, given a line L ⊂ V, there
exists g ∈ G such that g · L = L∞. In particular, by Lemma
VI-A.1 we get that fL∞ = ρ(g)fL is up to a unitary scalar in
BL∞ . In addition, by Lemma VI-A.2 we know that ϕTg = ρ(g)ϕT
is up to a unitary scalar in BTg . Finally, we have

〈ϕT , fL〉 = 〈ρ(g)ϕT , ρ(g)fL〉
=

〈
ϕTg, fL∞

〉
,

where the first equality is by the unitarity of ρ(g). Hence, by Step
2, we get the desired bound also in this case.

a) Proof of Lemma VI-A.1 : For ` ∈ L we have

π(g · `)fM = π(g · `)ρ(g)fL

= ρ(g)π(`)fL

= ψ(`)ρ(g)fL

= ψg(g · `)fM ,

where the second equality is by Identity (II-B.2). This completes
the proof of Lemma VI-A.1.

b) Proof of Lemma VI-A.2 : For h ∈ T we have

ρ(g · h · g−1)ϕTg = ρ(g · h · g−1)ρ(g)ϕT

= ρ(g)ρ(h)ϕT

= χ(h)ρ(g)ϕT

= χg(g · h · g−1)ϕTg ,

where the second equality is because ρ is homomorphism (see
Theorem II-B.1). This completes our proof of Lemma VI-A.2,
and of the Flag Property.

2) Almost Orthogonality : Let SLj = fLj + ϕTj , j = 1, 2,
as in the assumptions. We have

M(SL1
, SL2

) = M(fL1
, fL2

) +M(fL1
, ϕT2

)

+M(ϕT1
, fL2

) +M(ϕT1
, ϕT2

).

The result now follows from Theorem III-A.1, Theorem III-B.2,
and the bound (VI-A.1). This completes our proof of the Almost
Orthogonality Property, and of Theorem III-C.1.

B. Verification of Formulas (IV-B.3), and (IV-B.4)

The idea is to use the fact that for g ∈ G, the explicit Weil
operator ρ(g) maps the explicit set SA to the set STg , Tg =
gAg−1. In details, for a character χ : A→ C∗ and an element g ∈
G define the character χg : Tg → C∗, by χg(g · h · g−1) = χ(h),
for every h ∈ A. Using Lemma VI-A.2 we deduce that if ϕχ ∈
SA is eigensequence of A with character χ, then ϕχg = ρ(g)ϕχ ∈
STg is eigensequence of Tg with character χg. Specializing to the
character χ = χζ , −1 6= ζ ∈ µN−1, of A, and the associated
sequence ϕχζ ∈ SA given by (IV-B.2), we can proceed to verify
the formulas.

1) Verification of Formula (IV-B.3): For the unipotent ele-
ment

uc =

(
1 0
c 1

)
, c ∈ ZN ,

we have

ϕχucζ [n] =
[
ρ(uc)ϕχζ

]
[n]

= e
2πi
N (−2−1cn2) · ϕχζ [n] ,

where the second equality is by Formula (II-B.5). This completes
our verification of Formula (IV-B.3).
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2) Verification of Formula (IV-B.4): For the element

g =

(
1 b
c 1 + bc

)
, b, c ∈ ZN , b 6= 0,

its Bruhat decomposition is(
1 b
c 1 + bc

)
=

(
1 0

1+bc
b 1

)(
0 1
−1 0

)(
1 0
b 1

)(
b−1 0
0 b

)
.

(VI-B.1)
This implies that for n ∈ ZN we have

ϕχgζ [n] =
[
ρ(g)ϕχζ

]
[n]

= Cb ·
e

2πi
N (−2−1 1+bc

b n2)

√
N

×

×
∑
ω∈ZN

e
2πi
N ω·n ·

[
e

2πi
N (−2−1bω2) · ϕχζ [bω]

]
,

with Cb = i−
N−1

2

(
b
N

)
, where in the second equality we use

identity (VI-B.1), the fact that ρ is homomorphism, and the For-
mulas (II-B.4), (II-B.5), (II-B.6). This completes our verification
of Formula (IV-B.4).

C. Verification of Formula (V-.2)
We verify Formula (V-.2) for the matched filter M(ϕ, φ),

ϕ, φ ∈ H, restricted to a line with finite slope. We proceed in
two steps:

Step 1. The formula holds for the line L0 and its shifts. Indeed,
for a fixed ω ∈ ZN we compute the matched filter on L′0 =
L0 + (0, ω) = {(τ , ω); τ ∈ ZN}. We get

M(ϕ, φ)[τ , ω] = 〈ϕ, π(τ , ω)φ〉
=

〈
ϕ, e

2πi
N ωn · φ[n+ τ ]

〉
=

〈
e−

2πi
N ω·n · ϕ[n], φ[n+ τ ]

〉
=

[
mexp(ωn)ϕ− ∗ φ

]
[τ ],

where the fourth equality is by the definition (V-.1) of ∗, and the
definition (V-.2) of mexp(·).

Step 2. The formula holds for the lines Lc, c ∈ ZN , and their
shifts. Indeed, the element

u−c =

(
1 0
−c 1

)
∈ G,

satisfies {
u−c · (1, c) = (1, 0),
u−c · (0, ω) = (0, ω).

(VI-C.1)

For a fixed ω ∈ ZN we compute the matched filter on L′c =
Lc + (0, ω) = {τ · (1, c) + (0, ω); τ ∈ ZN}. We get

M(ϕ, φ)[τ · (1, c) + (0, ω)]

= 〈ϕ, π[τ · (1, c) + (0, ω)]φ〉
= 〈ρ(u−c)ϕ, ρ(u−c)π[τ · (1, c) + (0, ω)]φ〉
= 〈ρ(u−c)ϕ, π(τ , ω)ρ(u−c)φ〉
= M(ρ(u−c)ϕ, ρ(u−c)φ)[τ , ω]

=
[
mexp(2−1cn2+ωn)ϕ− ∗mexp(−2−1cn2)φ

]
[τ ],

where, the second equality is by the unitarity of ρ, the third
equality is by Identities (II-B.2), (VI-C.1), and the last equality
is by Formula (II-B.5) and Step 1 above.

This confirms Step 2, and completes our verification of For-
mula (V-.2).
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