
PRODUCT SET PHENOMENA FOR COUNTABLE GROUPS

MICHAEL BJÖRKLUND AND ALEXANDER FISH

Abstract. We develop in this paper general techniques to analyze local combinato-
rial structures in product sets of two subsets of a countable group which are ”large”
with respect to certain classes of (not necessarily invariant) means on the group. As
applications of our methods, we extend and quantify a series of recent results by Jin,
Bergelson-Furstenberg-Weiss, Beiglböck-Bergelson-Fish, Griesmer and diNasso-Lupini to
general countable groups.

1. Introduction

1.1. General comments. Let G be a group and let L,R and S be given sets of subsets
of G. We shall think of L and R as defining two (possibly different) classes of large subsets
of the group and the elements of S will be regarded as the structured subsets of G.

In this paper, the term product set phenomenon (with respect to the sets L,R and
S) will refer to the event that whenever A ∈ L and B ∈ R, then their product set AB,
defined by

AB :=
{
a · b : a ∈ A, b ∈ B

}
∈ S.

If this happens, we shall say that the pair (L,R) is S-regular.
Perhaps the first occurrence of a (non-trivial) product set phenomenon recorded in the

literature is the following classical observation, which is often attributed to Steinhaus (see
e.g. [23]). Let G be a locally compact group with left Haar measure m and define

L :=
{
A ∈ B(G) : m(A) > 0

}
,

where B(G) denotes the set of Borel sets of G. Let S denote the set of all subsets of G
with non-empty interior. Then the pair (L,L) is S-regular, that is to say, the product
set of any two Borel sets with positive Haar measures contains a non-empty open set.

1.2. Structured sets in countable groups. This paper is concerned with product set
phenomena in countable groups. To explain our main results, we first need to define what
classes of large sets and structured sets we shall consider. We begin by describing our
choices of the structured sets.

Let G be a countable group. A set T ⊂ G is right thick if whenever F ⊂ G is a finite
subset, then there exists g in G such that

F · g ⊂ T.

We say that a set C ⊂ G is left syndetic if it has non-trivial intersection with any right
thick set, or equivalently, if there exists a finite set F ⊂ G such that FC = G. Let Syn
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denote the set of all left syndetic subsets of G and define the class of right piecewise left
syndetic sets PW-Syn by

PW-Syn :=
{
C ∩ T : C is left syndetic and T is right thick.

}
.

Equivalently, a set C ⊂ G is right piecewise left syndetic if there exists a finite set F ⊂ G
such that FC is right thick.

A particularly nice sub-class of left syndetic sets is formed by the so called Bohr sets.
Recall that a set C ⊂ G is Bohr if there exist a compact hausdorff group K, an epimor-
phism τ : G→ K (a homomorphism with dense image) and a non-empty open set U ⊂ K
such that

C ⊃ τ−1(U).

Let Bohr denote the set of all Bohr sets in G and define the class PW-Bohr of right
piecewise Bohr sets by

PW-Bohr :=
{
C ∩ T : C is Bohr and T is right thick.

}
.

The classes Syn, PW-Syn, Bohr and PW-Bohr will all be used as structured subsets of G
in this paper.

1.3. Large sets in amenable groups. The large subsets of G will primarily be defined
in terms of means on G. Recall that a mean on a countable G is a positive linear functional
λ on `∞(G) with norm one. Alternatively, we can think of a mean as a finitely additive
probability measure λ′ on G via the correspondence

λ′(C) = λ(χC), C ⊂ G,

where χC denotes the indicator function of the set C. Let M(G) denote the set of all
means on G. If C ⊂ M(G), then we define the upper and lower C-density of a set C ⊂ G
by

d∗C(C) = sup
λ∈C

λ′(C) and dC∗(C) = inf
λ∈C

λ′(C)

respectively. We say that a set is C-large if d∗C(C) is positive and C-conull if d∗(C) equals
one.

Recall that a countable group G is amenable if there exists a left invariant mean on G,
i.e. if the set

LG :=
{
λ ∈M(G) : ρ(g)∗λ = λ, ∀ g ∈ G

}
,

where ρ denotes the left regular representation on `∞(G) is non-empty. The class of
amenable groups contains all abelian groups, all locally finite groups and all groups of
subexponential growth. The free groups on at least two generators are well-known exam-
ples of non-amenable groups. The upper and lower LG-densities on an amenable group
are often referred to as the upper and lower Banach densities in the literature.

In the very influential classical paper [9], Følner (inspired by earlier works of Bogolyubov
in [6]) observed that if G is a countable amenable group and A ⊂ G is LG-large, then its
difference set AA−1 is left syndetic and right piecewise Bohr. In fact, Følner showed that
one can always find a Bohr set B, which contains the identity element, and a right thick
set T with the property that T ∩S is right thick for every right thick set S in G such that

AA−1 ⊃ B ∩ T.
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More recently, Jin in [14], Bergelson, Furstenberg and Weiss in [4] (for the integers) and
Bergelson, Beiglböck and the second author of this paper in [3], showed that whenever A
and B are LG-large subsets of a countable amenable group G, then the product set AB
is both right piecewise left syndetic and right piecewise Bohr. In other words, the pair
(LG,LG) is PW-Bohr-regular (and hence PW-Syn-regular). Note however that already
easy examples show that (LG,LG) is not Syn-regular.

1.4. Pit-falls for non-amenable groups. Let G be a countable group and suppose
µ is a probability measure on G such that µ(g) = µ(g−1) for all g and the support of
µ generates G. We shall call such a measure adapted and refer to the pair (G, µ) as a
measured group. If ρ denotes the left regular representation of G on `∞(G), then we let
ρ(µ) denote the operator

ρ(µ)ϕ(x) =

∫
G

ϕ(g−1x) dµ(g), ϕ ∈ `∞(G).

Classical arguments (e.g. Kakutani’s Fixed Point Theorem) show that the set

Lµ =
{
λ ∈M(G) : ρ(µ)∗λ = λ

}
is non-empty for every measured group (G, µ). We think of Lµ as a substitute for LG
when the group is not amenable. Indeed, if G is amenable, then it is well-known (see e.g.
[16] or [21]) that there exists a probability measure µ as above, such that Lµ = LG. The
study of Lµ-large sets was initiated by Furstenberg and Glasner in [10].

One of the aims of this paper is to extend the results mentioned above (for amenable
groups) to the setting of general countable groups and Lµ-densities. There are however
some serious pit-falls in the non-amenable case which the reader should be aware of before
we formulate our results.

Note that Følner’s Theorem implies that whenever G is a countable amenable group
and A and B and C are LG-large sets, then the intersection

AA−1 ∩BB−1 ∩ CC−1 is LG-large.

Let G denote the free group on three (free) generators {a, b, c} and let A, B and C
denote the sets of all elements in G, viewed as reduced words written from left to right,
beginning with the letters a, b and c respectively. One readily checks that A,B and C are
left syndetic, so in particular they are Lµ-large for every probability measure µ. However,

AA−1 ∩BB−1 ∩ CC−1 = {e},

which shows that Følner’s Theorem does not (naively) extend to non-amenable groups.
In fact, the situation is even worse. In Subsection 3.6 we shall construct a subset A of the
free group on two generators, which is Lµ-large for every adapted probability measure µ
on G, such that the difference set AA−1 is not left syndetic.

1.5. Furstenberg-Poisson means. Let (G, µ) be a countable measured group. A µ-
integrable function f on G is called left µ-harmonic if

f(g) =

∫
G

f(hg) dµ(h), ∀ g ∈ G.
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Let H∞l (G, µ) denote the space of all bounded left µ-harmonic functions. If G is non-
amenable, then it is well-known that H∞l (G, µ), equipped with the supremum norm, is a
non-separable Banach space. Define the set of (left) Furstenberg-Poisson means on G by

Fµ :=
{
λ ∈ Lµ : λ|H∞l (G,µ) = δe

}
.

It is easy to construct elements in Fµ. Indeed, for n ≥ 1, we define the mean

λn(ϕ) :=
1

n

n∑
k=1

∫
G

ϕdµ∗k, ∀ϕ ∈ `∞(G),

where µ∗k denotes the k-th convolution power of µ. One readily checks that every accu-
mulation point λ of the sequence (λn) in the weak*-topology onM(G) belongs to Lµ and
if f is a left µ-harmonic function on G, then λn(f) = f(e) for all n, and thus λ ∈ Fµ. In
particular, if B ⊂ G and

lim
n→∞

1

n

n−1∑
k=0

µ∗k(B) > 0,

then B is Fµ-large (and hence Lµ-large).

1.6. Fourier-Stiltjes means. Let G be a countable group and let π be a unitary repre-
sentation of G on a Hilbert space H. Given x, y ∈ H, the function

ϕ(g) =
〈
y, π(g)x

〉
is called a matrix coefficient of π. The space of all matrix coefficients on G (when π
ranges over all unitary representations of G) is easily seen to be a ∗-sub-algebra of `∞(G),
i.e. a linear subspace which is closed under pointwise multiplication and taking complex
conjugates. We shall refer to this algebra as the Fourier-Stiltjes algebra of G and denote
it by B(G).

A classical result due to Ryll-Nardzewski (see e.g. [12]) asserts there exists a unique
left invariant mean λo on B(G). We define the space FS of Fourier-Stiltjes means on G
by

FS :=
{
λ ∈M(G) : λ|B(G) = λo

}
.

Clearly, if G is amenable, then every left invariant mean belongs to FS. In fact, it is not
hard to show that Lµ ⊂ FS for every measured group (G, µ). Indeed, note that if ϕ is a
matrix coefficient on the form above and λ belongs to Lµ, then

λ(ϕ) =
〈
y, x̄
〉
,

where

x̄ :=

∫
G

π(h)x dλ(h)

Note that x̄ satisfies∫
G

π(g)x̄ dµ(g) =

∫
G

(∫
G

π(gh)x dλ(h)
)
dµ(g)

=

∫
G

π(h)x d(ρ(µ)∗λ)(h) = x̄.
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By the strict convexity of the unit ball in H, we conclude that x̄ is π(G)-invariant, and
thus the restriction of λ to B(G) must be left G-invariant. By the uniqueness of the left
invariant mean on B(G), the restriction must coincide with λo. In particular,

Fµ ⊂ Lµ ⊂ FS.
For an alternative proof of the second inclusion, we refer the reader to [10].

We stress that the set of FS-large subsets of G is considerably larger than the set of
Lµ-large subsets for any adapted measure µ. See Subsection 1.8 for further comments.

1.7. Statements of main results. As we have seen from the discussions above, great
care needs to be taken when trying to formulate sensible extensions of Følner’s Theorem
to non-amenable groups. In this paper, we shall present two results in this direction. The
first one partly extends the syndeticity claim in Følner’s Theorem, and the second partly
extends the ”local” Bohr containment.

Recall that a set C ⊂ G is right piecewise left syndetic if there exists a finite set F ⊂ G
such that FC is right thick.

Theorem 1.1. Let (G, µ) be a countable measured group. Suppose A ⊂ G is Fµ-large
and B ⊂ G is Lµ-large. Then AB is right piecewise left syndetic.

A more symmetrical statement, which does not involve Fµ-densities, can also be made.
The deduction of this statement from the theorem above will be briefly explained in
Subsection 3.3. However, we stress that there are more direct routes to proving this
result.

Corollary 1.1. Let (G, µ) be a countable measured group. If A ⊂ G is Lµ-large, then the
difference set AA−1 is right piecewise left syndetic, but not necessarily left syndetic.

Our second theorem requires a bit more set up. Let G be a countable group and let
B ⊂ G. The Bebutov algebra of B, here denoted by BB, is defined as the smallest left
G-invariant sub-C*-algebra of `∞(G) containing the constant functions and the indicator
function χB of the set B.

We shall say that B is strongly non-paradoxical if there exists a left G-invariant mean
η on BB such that η′(B) is positive. Let LB denote the set of all means on G whose
restrictions to BB are left G-invariant. The non-paradoxical density of B is now defined
as

d∗np(B) = sup
λ∈LB

λ′(B).

This definition may seem rather far-fetched, so we shall take a moment here to motivate
why we have introduced it. First note that if G is amenable, then BB always admits a
left G-invariant mean and

d∗LG(B) = d∗np(B),

so the reader who wishes to stay within the class of amenable groups (for which the result
which we shall state below is also new) can simply think of the non-paradoxical density
as a roundabout re-packaging of the standard upper Banach density.

In order to better understand which kind of sets we wish to exclude by restricting our
attention to strongly non-paradoxical sets (and to partly motivate the name), we can
consider the group F2, the free group on two (free) generators, which we shall denote by
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a and b. Let A be the set of all group elements whose reduced form (from left to right)
begins with either a or a−1. Note that

A ∪ a · A ∪ a−1 · A = F2,

so in particular, A is left syndetic. Moreover,

bm · A ∩ bn · A 6= ∅, ∀m 6= n,

so all left translates of the form bn · A are disjoint. If there exists a mean λ on G such
that λ′(g · A) = λ′(A) for all g ∈ G (that is to say, the set LA is non-empty), then

λ′
( n⋃
k=1

bk · A
)

= n · λ′(A) ≤ 1,

for all n, which clearly forces λ′(A) = 0. However, we also have

1 = λ′(A ∪ a · A ∪ a−1 · A) ≤ 3 · λ′(A),

and thus λ′(A) ≥ 1
3
. This contradiction clearly implies that A is not strongly non-

paradoxical. In essence, the notion of strong non-paradoxicality is designed to exclude
exactly this kind of sets.

The Bohr compactification (bG, ιo) of a countable group G consists of a (possibly triv-
ial) compact hausdorff group bG and a homomorphism ιo : G → bG with dense image
such that whenever K is a compact hausdorff group, together with a homomorphism
ι : G→ K with dense image, then there exists a surjective homomorphism ιK : bG→ K
such that ιK ◦ ιo = ι. Note that a set B ⊂ G is a Bohr set according to the definition
above if and only if there exists a non-empty open set U ⊂ bG such that B = ι−1

o (U).

We need a final definition before we can state our second theorem. If K is a compact
hausdorff group and U is a non-empty open set, then there is a finite set F such that
FU = K. The minimal cardinality will be referred to as the syndeticity index of U in K
and denoted by sK(U). Formally,

sK(U) := min
{
|F | : F ⊂ K and FU = K

}
.

We shall think of sK(U) as a measurement of the ”regularity” of the open set. Intuitively,
if U is a random union of small disjoint open sets (a ”porous” set), then we expect the
syndeticity index of this set to be quite large relative to the Haar measure of the set,
while more ”connected” subsets (which look more like intervals or open subgroups) are
likely to have smaller syndeticity indices.

We can now state our last theorem which is new already in the case of the integers
(where strong non-paradoxicality translates to LZ-large and d∗np equals the upper Banach
density).

Theorem 1.2. Let G be a countable group. Suppose A ⊂ G is FS-large and B ⊂ G is
strongly left non-paradoxical. Then there exist an open set U ⊂ bG with

sbG(U) ≤
⌊ 1

d∗FS(A) · d∗np(B)

⌋
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and a right thick set T ⊂ G such that

AB ⊃ ι−1
o (U) ∩ T.

In particular, if G is amenable and A ⊂ G is FS-large, then AB is a right piecewise Bohr
set for every LG-large set B ⊂ G.

1.8. Connection to earlier results. We have already mentioned in the introduction
the classical papers of Bogliouboff and of Følner which have motivated a plethora of later
works on product sets in groups. In this short section, we wish to draw the reader’s
attention to some more recent works which our main results generalize.

Theorem 1.1 is inspired by the following result of R. Jin from 2005 which was established
by a clever non-standard analytic reduction to the setting of Følner’s Theorem.

Theorem 1.3. [14] Suppose A,B ⊂ Z are LZ-large subsets. Then AB is piecewise syn-
detic.

More recently, M. di Nasso and Lupini [8] gave the following quantification of Jin’s
result (for any countable amenable group), which motivated Theorem 1.2 of this paper.

Theorem 1.4 ([8]). Let G be a countable amenable group and suppose A,B ⊂ G are
LG-large subsets. Then there exists a finite set F ⊂ G with

|F | ≤
⌊ 1

d∗LG(A) · d∗LG(B)

⌋
such that FAB is right thick.

The question whether the product of two sets of integers with positive upper Banach
densities contains translates of every finite piece of a Bohr set was raised and answered in
the paper [4] by V. Bergelson, H. Furstenberg and B. Weiss, and was later extended in [3]
to cover the case of products of sets in any countable amenable group by V. Bergelson,
M. Beiglböck and the second author of this paper.

We shall say that a set C ⊂ G is right piecewise Bohr if there exists a Bohr set B ⊂ G
and a right thick set T ⊂ G such that

C ⊃ B ∩ T.
Theorem 1.5 ([3]). Let G be a countable amenable group and suppose A,B ⊂ G are LG-
large sets. Then AB is a right piecewise Bohr set. In particular, AB is right piecewise
left syndetic.

In [13], J. Griesmer established a beautiful and far-reaching generalization of the main
theorem in [3]. To explain his result, we shall need some notation. Let G be a countable
amenable group. We shall say that a sequence (νn) of probability measures is equidis-
tributed if for any unitary representation (H, ρ) of G, we have

lim
n
νn(ρ)x = Pρx, ∀x ∈ H,

in the norm topology on H, where Pρ denotes the projection onto the ρ-fixed vectors, and

νn(ρ) :=

∫
G

ρ(g) dνn(g).
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In particular, if G is a countable abelian group, then (νn) is equidistributed if and only if
the limit ν̂n(χ)→ 0 holds of all non-zero characters χ in the dual group of G as n→∞.
Here, ν̂n denotes the Fourier transform of the measure νn.

We shall say that a subset A ⊂ G is large with respect to (νn) if

lim sup
n→∞

νn(A) > 0.

Griesmer gives a wealth of examples in [13] of subsets of integers which are not LZ-large,
but large with respect to some equidistributed sequence.

One observes that upon considering an equidistributed sequence (νn) as a sequence in
the dual of `∞(G), then its defining property implies that any accumulation point in the
set M(G) must belong to FS. In particular, every subset of a countable group which
is large with respect to an equidistributed sequence must be FS-large, so the following
theorem is strictly contained in our Theorem 1.2.

Theorem 1.6 ([13]). Let G be a countable amenable group and suppose A ⊂ G is large
with respect to an equidistributed sequence of probability measures on G and B ⊂ G is
LG-large. Then AB is a right piecewise Bohr set.

1.9. An outline of Theorem 1.1. We shall now attempt to break down the proof of
Theorem 1.1 into two main steps. The proofs of each step will be given in Section 4 and
Section 5 respectively. We refer to these sections for a more detailed discussion about the
notions in this chapter.

1.9.1. Ergodicity of C-densities. The first main step in the proof of Theorem 1.1 consists
of the following generalization of Lemma 3.2 in [3]. This lemma asserts the same as the
proposition below but for the set LG of left invariant means on a countable amenable
group instead of the set of Furstenberg-Poisson means Fµ on a countable (symmetric)
measured group (G, µ).

Although not explicitly stated in [3], the only property of LG which is used in the
proof of Lemma 3.2 in [3] is what we shall refer to as left ergodicity, namely that every
extremal point of the weak*-compact convex subset LG ⊂M(G) corresponds (under the
Gelfand-Naimark map) to a left G-invariant ergodic probability measure on βG.

This property is relatively straightforward to verify for the sets LG (whenG is amenable)
and Lµ (for a measured group (G, µ)). However, it also holds for the set Fµ but this fact
requires a more detailed discussion about the Furstenberg-Poisson boundary of (G, µ)
which will be outlined in Subection 3.5.

Proposition 1.2. Suppose A ⊂ G is Fµ-large. Then,

sup d∗Fµ(FA) = 1,

where the supremum is taken over all finite subsets F ⊂ G.

1.9.2. A criterion for right thickness of product sets. The second main step is inspired by
Lemma 3.1 in [3], and indeed reduces to this lemma in the case when LG = Lµ. However,
the proof of this step for a general measured group necessarily follows a different route
than the proof given in [3]. For instance, we do not know if the proposition holds with
Fµ replaced with Lµ in the first addend.
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Proposition 1.3. Suppose A,B ⊂ G satisfy

d∗Fµ(A) + d∗Lµ(B) > 1.

Then AB is right thick.

We shall now combine the two propositions above to give a proof of Theorem 1.1.

1.9.3. Proof of Theorem 1.1. Suppose A ⊂ G is Fµ-large and B ⊂ G is Lµ-large. We
wish to prove that there exists a finite set F ⊂ G such that the triple product set FAB
is right thick. By Proposition 1.3, it suffices to prove that

d∗Fµ(FA) + d∗Lµ(B) > 1

for some finite set F ⊂ G, or equivalently,

sup
F
d∗Fµ(FA) > 1− d∗Lµ(B),

where the supremum is taken over all finite subsets F ⊂ G. The result now follows from
Proposition 1.2.

1.10. An outline of Theorem 1.2. The proof of Theorem 1.2 can be divided into three
main steps, where the first step is the most important one, and the two other steps are
more of a standard nature. However, since we do not know of a good reference for these
steps in the generality needed here, we shall provide proofs of the necessary statements.

1.10.1. Producing some Bohr structure. The first step will be outlined in Section 6. For
definitions and a more detailed discussion about the notation in this summary we refer
the reader to Subsection 2.3.

Let G be a countable group and let βG denote its Stone-Čech compactification. Given
a subset C ⊂ G, we denote by C its ”closure” in βG. If q ∈ βG, then we shall write

Cq :=
{
g ∈ G : g · q ∈ C

}
⊂ G.

In particular, if ē denotes the ”image” of the identity element e in βG, then C = C ē.

Proposition 1.4. Suppose A ⊂ G is FS-large and B ⊂ G is strongly non-paradoxical.
Then there exist Borel sets Ã, B̃ ⊂ bG with

m(Ã) ≥ d∗FS(A) and m(B̃) ≥ d∗np(B)

and q ∈ βG and ko ∈ bG such that

ABq ⊃ ι−1(U · ko),

where

U :=
{
k ∈ bG : m(Ã ∩ k · B̃−1) > 0

}
⊂ bG.
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1.10.2. Piecewise inclusion. Let B,C ⊂ G and let B,C ⊂ βG denote the corresponding
closures in βG. Suppose we have an inclusion of the form

Cq ⊃ Bq,

for some q ∈ βG. The next proposition shows that if B is the pull-back to βG (under a
continuous G-equivariant map) of a Jordan measurable subset of the Bohr compactifica-
tion, then some ”virtual” translate of B is ”almost” completely contained in C.

Proposition 1.5. Let C ⊂ G and suppose there exist q ∈ βG and an open Jordan
measurable set U ⊂ bG such that

Cq ⊃ ι−1(U).

Then there exist a right thick set T ⊂ G and k ∈ bG such that

C ⊃ ι−1(U · k) ∩ T.

1.10.3. Getting Jordan measurability. The last step is the most standard one and is needed
to adapt the outcome of Proposition 1.4 to the setting of Proposition 1.5. The main result
here is a generalization to compact hausdorff groups of the well-known fact that every
closed subset of a compact metrizable group is contained in a Jordan measurable subset
with Haar measure arbitrarily close to the Haar measure of the closed set. The arguments
needed to relate this generalization to the proposition below will be outlined in Section 8.

Proposition 1.6. Let K be a compact hausdorff group with Haar probability measure m.
If A,B ⊂ K are Borel sets with positive Haar measures, and

U :=
{
k ∈ K : m(A ∩ k ·B) > 0

}
⊂ K,

then there exists an open Jordan measurable set U ′ ⊂ U with

sK(U ′) ≤
⌊ 1

m(A) ·m(B)

⌋
.

We shall now combine the three propositions above to give a proof of Theorem 1.2.

1.10.4. Proof of Theorem 1.2. Let G be a countable group and suppose A ⊂ G is FS-
large and B ⊂ G is strongly non-paradoxical.

By Proposition 1.4 there exist Borel sets Ã, B̃ ⊂ bG with

m(Ã) ≥ d∗FS(A) and m(B̃) ≥ d∗np(B)

and q ∈ βG and ko ∈ bG such that

ABq ⊃ ι−1(U · ko),
where

U :=
{
k ∈ bG : m(Ã ∩ k · B̃−1) > 0

}
⊂ bG.

Proposition 1.6 guarantees that we can find an open and Jordan measurable subset U ′ ⊂ U
with

sbG(U ′) ≤
⌊ 1

m(Ã) ·m(B̃−1)

⌋
≤
⌊ 1

d∗FS(A) · d∗np(B)

⌋
,
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where the last inequality is justified by the fact that m(B̃−1) = m(B̃). Now,

ABq ⊃ ι−1(U · ko) ⊃ ι−1(U ′ · ko),

so Proposition 1.5 applies with C = AB, and we conclude that there exist a right thick
set T ⊂ G and k ∈ bG such that

AB ⊃ ι−1(U ′ · ko · k) ∩ T,

which finishes the proof.

1.11. Organization of the paper. The paper is organized as follows. Section 2 is de-
voted to basic facts about the C*-algebraic theory of sub-algebras of the space of bounded
functions on a countable group G, and to some basic measure theory on βG. In particular,
we give characterizations of right thick sets and left syndetic sets in terms on upper and
lower C-densities for special classes of sets C ⊂ M(G).

In Section 3 we develop some basic ergodic theory for measured groups which will be
needed in the proofs of Proposition 1.2 and Proposition 1.3. In the final subsection of
this section we outline a proof of claim about failure of syndeticity of difference sets in
general countable measured groups.

In Section 4 and Section 5 we give the proofs of the assertions needed in the proof
of Theorem 1.1. In Section 6 we discuss unitary representations of countable groups; in
particular we make the direct sum of the Eberlein algebra more explicit. This is needed
for the proof of Proposition 1.4.

In Section 7 we discuss the relevance of almost automorphic points to Proposition 1.5,
and give a proof of this proposition.

In Section 8 we prove some elementary facts about Jordan measurable subsets of com-
pact hausdorff groups needed for Proposition 1.6.
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2. Preliminaries and basic notions

2.1. Uniform algebras. We shall now review some basic elements in the theory of norm
closed sub-algebras of `∞(G). For more details, including the proofs of the all statements
in this subsection, we refer the reader to the second chapter of the book [17]; In particular,
subsections 2.9 and 2.10 therein.
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2.1.1. The Stone-Čech compactification. Let G be a countable group, and let `∞(G) de-
note the algebra of bounded functions on G. We denote the complex conjugation operator
on `∞(G) by ∗. Equipped with this involution and the supremum norm ‖·‖∞, this algebra
carries the structure of a unital commutative C*-algebra. As such, its Gelfand spectrum
βG, i.e. the set of multiplicative functionals on `∞(G), endowed with the weak*-subspace
topology inherited from the unit ball of the dual of `∞(G), is a weak*-compact hausdorff
space. Moreover, by Gelfand-Naimark’s Theorem, we have

`∞(G) ∼= C(βG),

where C(βG) denotes the space of continuous function on βG.
Furthermore, the left and right action of G on itself induce left and right anti-actions

on `∞(G), and thus left and right actions by homeomorphisms on βG. We shall refer to
βG as the Stone-Čech compactification of G.

The map δe which evaluates a bounded function on G at the identity element e is a
multiplicative functional on `∞(G) and thus corresponds to a point ē in βG. One readily
shows that this point is G-transitive under both the left and right action of G on βG.
Moreover, a left G-equivariant isomorphism between C(βG) and `∞(G) is implemented
by the map

τ(ϕ)(g) = ϕ(g · ē), ϕ ∈ C(βG). (2.1)

2.1.2. Relations with sub-algebras. More generally, if B ⊂ `∞(G) is a norm-closed unital
sub-algebra of `∞(G), then it is again a C*-algebra, and its Gelfand spectrum ∆(B) is a
compact hausdorff space with the property that

B ∼= C(∆(B)).

By Urysohn’s Lemma, ∆(B) is second countable if and only if B is separable.

If B is invariant under the left anti-action of G on `∞(G), then this anti-action induces
an action of G by homeomorphisms on ∆(B). For every g ∈ G, the Dirac measure δg at g
is a multiplicative functional on B. Let xo denote the point in ∆(B) corresponding to the
evalutation map δe and let X denote the orbit closure of xo under the induced G-action.
If X 6= ∆(B), then the complement of X is open and we can find a non-zero continuous
function ϕ on ∆(B) (corresponding to an non-zero element ϕ in B) which vanishes on X.
In particular,

g · xo(ϕ) = ϕ(g) = 0, ∀ g ∈ G,

which is a contradiction, since ϕ was assumed non-zero, and thus X = ∆(B). We conclude
that xo is a G-transitive point in ∆(B). By Gelfand-Naimark’s Theorem, the inclusion
map B ↪→ `∞(G) is induced by a surjective continuous map πB : βG→ ∆(B), i.e. ι = π∗B,
where

π∗Bϕ := ϕ ◦ πB.

If B is left invariant, then this map is left G-equivariant (with respect to the left action
on βG) and πB(ē) = xo.
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2.1.3. Almost periodic functions. We shall now consider a few examples of the situation
outlined in the previous paragraph.

Let AP(G) denote the algebra of almost periodic functions on G, i.e. the ∗-sub-algebra
of `∞(G) consisting of those bounded functions ϕ whose left anti-G-orbit G · ϕ in `∞(G)
is pre-compact in the norm topology. Equipped with the conjugation involution and the
supremum norm, this ∗-algebra is a sub-C*-algebra of `∞(G), and we shall denote its
Gelfand spectrum by bG.

We refer to subsection 2.10 in the book [17] for the proof that the group multiplication
on G extends to a jointly continuous multiplication on bG, i.e. bG can be given the
structure of a compact hausdorff group. Again, there is a natural (but this time not
necessarily injective) homomorphism ι : G→ bG given by

g 7→ δg,

where δg denotes the evaluation map on `∞(G) at the element g. Furthermore, this map
is universal in the sense that whenever K is a compact hausdorff group and ιo : G →
K is a homomorphism with a dense image, then there exists a continuous surjective
homomorphism ιK : bG→ K such that

ιK ◦ ι = ιo.

We shall refer to (bG, ι) as the Bohr compactification ofG, and the unique Haar probability
measure on bG will be denoted by m. Note that by construction, we have

AP(G) = ι∗C(βG).

Recall that a state (or mean) on `∞(G) is a positive, norm-one functional on `∞(G). The
set M(G) of all states on `∞(G) is a weak*-compact and convex subset of `∞(G)∗. We
shall say that λ ∈M(G) is a Bohr mean if the restriction of λ to AP(G) equals the pull-
back of the Haar probability measure on bG and denote the non-empty weak*-compact
and convex subset of M(G) consisting of all Bohr means by Bohr.

2.1.4. Fourier-Stiljes algebras. Let B(G) denote the Fourier-Stiltjes algebra of G, i.e. the
∗-sub-algebra of `∞(G) generated by all matrix coefficients of unitary representations of
G. Hence an element ϕ in B(G) has the form

ϕ(g) =
〈
x, π(g)y

〉
, g ∈ G,

where (H, π) is some unitary representation of G on a Hilbert space H, and x, y ∈ H.
We stress that B(G) is not a norm-closed subspace of `∞(G). Its norm closure, often
called the Eberlein algebra, will here be denoted by E(G), and its Gelfand spectrum will
be denoted by eG.

As is well-known (see e.g. Chapter 1.10 in [12]), there is a unique left and right invariant
state λo on E(G), and E(G) admits a direct sum decomposition of the form

E(G) = AP(G)⊕ Eo(G), (2.2)

where

Eo(G) :=
{
ϕ ∈ E(G) : λo(ϕ

∗ϕ) = 0
}
.

The set FS ⊂ Bohr(G) consisting of those means whose restrictions to E(G) coincide
with λo will be referred to as Fourier-Stiltjes means.
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2.2. Bauer’s Maximum Principle. Let G be a countable group and letM(G) denote
the set of states on `∞(G), or alternatively, the set of means on G. If λ ∈ M(G), then
we define

λ′(C) := λ(χC), C ⊂ G.

One readily checks that λ′ is a finitely additive (but not necessarily σ-additive) probability
measure on G and for every C ⊂ G, the affine map

λ 7→ λ′(C), λ ∈M(G)

is weak*-continuous.

Given a set C ⊂ M(G), we define the upper and lower C-densities of a subset C ⊂ G
by

d∗C(C) := sup
λ∈C

λ′(C) and dC∗(C) := inf
λ∈C

λ′(C)

respectively. If C is weak*-compact, then the supremum and infimum above are attained.
Furthermore, since the maps involved are affine, we can also say some things about the
location of these extrema, as the following result shows.

Before we state the main proposition of this section (which is known as Brauer’s Max-
imum Principle), we recall that the classical Krein-Milman’s Theorem asserts that any
non-empty weak*-compact and convex subset C of the dual of a Banach space has extremal
points, i.e. elements λ in C which do not admit a representation of the form

λ = α1 · λ1 + α2 · λ2,

where λ1, λ2 ∈ C and α1, α2 are positive numbers with α1 + α2 = 1.

Proposition 2.1 (Theorem 7.69 in [1]). Let C be a weak*-compact convex subset of the
dual of a Banach space and suppose ϕ : C → R is an upper semicontinuous convex
function. Then ϕ attains its maximum at an extremal point in C.

Applied to the Banach space X = `∞(G), we have the following immediate corollary,
which shall be used frequently.

Corollary 2.2. Let X be a Banach space and suppose C ⊂ X∗ is a weak*-compact convex
set. For every x ∈ X, there exist an extremal λo ∈ C such that

λo(x) = sup
λ∈C

λ(x).

In particular, for any weak*-compact convex set C ⊂ M(G) and for any C ⊂ G, there
exist extremal elements λo and λ1 in C such that

d∗C(C) = λ′o(C) and dC∗(C) = λ′1(C).

For separable Banach spaces, this corollary can be deduced from Choquet’s Theorem.
However, in the case X is not separable (which is of crucial interest to us), there is no
reason to expect that the set of extremal points of C ⊂ X∗ is even Borel measurable, and
thus disintegration techniques are not directly applicable.

2.3. Measure theory on βG. There is also an important interchange between subsets
of the group and clopen subsets of βG which we now describe.
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2.3.1. Set correspondences. Recall that the map τ : C(βG)→ `∞(G) given by

τ(f)(g) = f(g · ē), g ∈ G,
is an isometric ∗-isomorphism. Hence, if C ⊂ G, then there exists a unique ϕ in C(βG)
such that χC = τ(ϕ), and thus

τ(ϕ∗ϕ) = τ(ϕ)∗τ(ϕ) = χ2
C = τ(ϕ),

which implies that ϕ is idempotent in C(βG). Since τ is an isomorphism, this entails that
ϕ is necessarily equal to the indicator function of a subset C of βG. Since the indicator
function of this set is continuous, we conclude that C is clopen. Conversely, if C is a
clopen set, then one readily checks that τ(χC) is the indicator function of a subset C of
G. Hence we have a one-to-one correspondence

C ←→ C

between subsets of G and clopen subsets of βG.

2.3.2. Measure correspondences. Since the map τ above is clearly positivity preserving
and unital, we see that if λ is a mean on G, then τ ∗λ is a positive unital continuous
functional on C(βG), and can thus be thought of as a σ-additive Borel probability measure
on βG, via Riesz Representation Theorem. Conversely, any Borel probability measure λ
on βG induces a linear functional on C(βG) by integration, and thus to a state on `∞(G)
(or equivalently, a mean on G). Hence there is a one-to-one correspondence between
means on G and probability measures on βG given by

λ←→ λ.

2.3.3. Beyond continuous functions. Note that the map τ above is clearly defined for all
functions on βG, continuous or not. However, easy examples show that there may be no
relation between the λ-integral of a discontinuous function ϕ on βG and the λ-value of
τ(ϕ) for a given mean λ on G.

However, as we shall see in the following lemma, it is possible to relate the two values
when ϕ is a lower semicontinuous function on βG.

Lemma 2.3. Suppose ϕ is a bounded positive function on βG and equal to the supremum
of an increasing sequence of continuous functions on βG. Then

λ(τ(ϕ)) ≥
∫
βG

ϕdλ, ∀λ ∈M(G).

Proof. Let (ϕn) be an increasing sequence of continuous functions on βG such that

ϕ = sup
n
ϕn.

Fix λ ∈M(G). Then, for every n, we have

λ(τ(ϕ)) ≥ λ(τ(ϕn)) =

∫
βG

ϕn dλ.

Since λ is a σ-additive Borel probability measure on βG,

sup
n

∫
βG

ϕn dλ =

∫
βG

ϕdλ
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by monotone convergence, which finishes the proof. �

2.3.4. Integrating open sets in βG. Let us recall the notion of a lower C-density for a
countable group G. If C ⊂ M(G), we defined the lower C-density of a subset C ⊂ G by

dC∗(C) := inf
λ∈C

λ′(C).

Now, if B ⊂ βG is any Borel set and q is any point in βG, we can construct ”the return
time” subset Bq ⊂ G by

Bq :=
{
g ∈ G : g · q ∈ B

}
.

In particular, if C ⊂ G and C denotes the corresponding clopen set in βG, then C = C ē,
and

λ′(C ē) = λ(C), ∀λ ∈M(G).

When B is no longer clopen in βG, there is no reason to expect any relation of this sort.
However, as we shall see in the next lemma, there is a very important lower bound, in
the case when B consists of countable union of clopen sets.

Lemma 2.4. Let C ⊂ M(G) be a weak*-compact and convex set and suppose U ⊂ βG is
a countable union of clopen sets in βG. Then there exists an extremal λ ∈ C such that

dC∗(Uē) ≥ λ(U).

Proof. By Corollary 2.2, applied to the set C := U c
ē , there exists an extremal λ ∈ C such

that

λ′(Uē) = dC∗(Uē).

By assumption, the indicator function ϕ := χU equals the supremum of an increasing
sequence of indicator functions on clopen sets (which are continuous), so by Lemma 2.3,
we have

λ′(Uē) = λ(τ(χU)) ≥ λ(U),

which finishes the proof. �

2.4. Combinatorics on βG. The next two subsection will be concernted with the prob-
lem of reading of combinatorial properties of a subset C ⊂ G from topological properties
of C ⊂ βG and dynamical properties of the ”return time sets”

Cq =
{
g ∈ G : g · q ∈ C

}
⊂ G,

for various choices of q ∈ βG.

Lemma 2.5. For every C ⊂ G and finite F ⊂ G, the sets

UF (C) :=
{
q ∈ βG : F ⊂ Cq

}
and UF (C) :=

{
q ∈ βG : Cq ⊂ G \ F

}
are clopen subsets of βG.

Proof. Since C ⊂ βG is clopen and

UF (C) = UF (Cc),
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it suffices to prove that UF (C) is clopen in βG for every C ⊂ G and finite F ⊂ G. Note
that

UF (C) =
⋂
f∈F

U{f}(C),

and

U{f}(C) =
{
q ∈ βG : f ∈ Cq

}
= f−1 · C, ∀ f ∈ F.

Since the latter sets are all clopen and UF (C) is a finite intersection of such sets, we
conclude that UF (C) is clopen as well. �

Lemma 2.6. For every C ⊂ G, q ∈ βG and finite F ⊂ G, there exists g ∈ G such that

C · g−1 ∩ F = Cq ∩ F.

In fact, for every q ∈ βG, the set of p ∈ βG such that

Cp ∩ F = Cq ∩ F

is clopen.

Proof. Fix q ∈ βG and a finite set F ⊂ G and define

I := F ∩ Cq and J := F ∩ (Cq)
c

By Lemma 2.5 the set

EF (q) :=
{
p ∈ βG : Cp ∩ F = Cq ∩ F

}
= UI(C) ∩ UJ(C)

is clopen and clearly contains q. Since ē ∈ βG is G-transitive, we can find g ∈ G such
that g · ē ∈ EF (q), or equivalently,

Cg·ē ∩ F = C · g−1 ∩ F = Cq ∩ F,

which finishes the proof. �

2.4.1. Jordan measurability and local inclusion. Recall that if ν is a Borel probability
measure on a compact hausdorff space X, then a Borel set C ⊂ X is ν-Jordan measurable
if the ν-measure of the topological boundary

∂B := B \Bo ⊂ X

is zero, where Bo denotes the interior of B.
In many of the applications in this paper, we shall require a stronger form of Jordan

measurability. Let P(X) denote the space of Borel probability measures on X, identified
with the set of states of the C*-algebra C(X) via the Riesz Representation Theorem.
Given a subset C ⊂ P(X) we shall say that a set C ⊂ X is C-tempered if C is ν-Jordan
measurable for all ν ∈ C.

The property of C-temperedness behaves well under liftings as the following lemma
shows.

Lemma 2.7. Let C ⊂ P(X) and suppose π : X → Y is a continuous map. If B ⊂ Y is
π∗C-tempered, then π−1(B) ⊂ X is C-tempered.
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Proof. This is an immediate consequence of the inclusions

π−1(Bo) ⊂ π−1(B)o ⊂ π−1(B) ⊂ π−1(B) ⊂ π−1(B),

and the monotonicity of positive measures. �

The next result will be a crucial ingredient in the proof of Proposition 1.5. A key point
in the proof is the extreme disconnectedness of βG. Recall that a compact hausdorff space
is extremely disconnected if the closure of any open subset is clopen. The classical fact
that βG is extremely disconnected for any discrete group G can be found in [15].

Also recall that a set C ⊂ M(G) is left saturated if every closed left-G-invariant subset
Y ⊂ βG supports a probability measure of the form λ for some λ in C with the property
that whenever A ⊂ βG is a Borel set with λ(A) = 0, then λ(g · A) = 0 for all g ∈ G.

Lemma 2.8. Let C ⊂ M(G) be a left saturated set and denote by C its image in P(βG).
Let C ⊂ G and suppose U ⊂ βG is an open C-tempered set. If

Cq ⊃ Uq

for some q ∈ βG, then there exists a C-conull set T ⊂ G such that

C ⊃ Uē ∩ T.

Proof. Define the open set D := U \ C. By assumption, Dq is empty, and thus

Y := βG \GD ⊂ βG

is a non-empty, closed and G-invariant set. Since C is left saturated, there exists λ ∈ C
such that λ(Y ) = 1, and thus λ(D) = 0. Since C is clopen and U is Jordan measurable
with respect to λ, we have

λ(U) = λ(U) = λ(U ∩ C) = λ(U ∩ C),

and hence λ(U \ C) = 0. Since βG is extremely disconnected and U is open, U \ C is
clopen, and thus

λ((U \ C)ē) = λ(U \ C).

Define the sets

T := βG \
(
U \ C

)
and T := T ē.

Then λ(T ) = λ(T ) = 1, so T is C-conull, and

C ē ⊃ U ē ∩ T ⊃ Uē ∩ T,
which finishes the proof. �

2.5. Properties of right thick sets. Recall that a subset T ⊂ G is right thick if for
every finite subset F ⊂ G there exists g ∈ G such that

Fg−1 ⊂ T.

The following lemma is a simple characterization of right thickness in a countable group
G in terms of clopen subsets of βG.

Lemma 2.9. A set T ⊂ G is right thick if and only if T q = G for some q ∈ βG.
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Proof. Suppose T q = G for some q ∈ βG and fix a finite set F in G. By Lemma 2.6, there
exists g ∈ G such that

T · g−1 ⊃ F,

and hence T is right thick.
Now suppose that T is right thick and choose an increasing sequence (Fn) of finite sets

with ∪nFn = G. Since T is right thick, we can find a sequence (gn) in G such that

T = T ē ⊃ Fn · g−1
n ,

or equivalently T g−1
n ·ē ⊃ Fn, for all n. Extract a convergent subset (g−1

nα · ē) with limit

point q. We claim that T q = G. Indeed, fix any finite subset F ⊂ G. By Lemma 2.5, the
set UF (T ) is clopen. Note that gnα · ē ∈ UF (T ) for all nα with F ⊂ Fnα . In particular,
q ∈ UF (T ) since UF (T ) is closed. Now, F was chosen arbitrary, so we conclude that
T q = G. �

2.5.1. Density characterizations of right thick sets. If G is a countable amenable group,
then right thickness has a simple description in terms of invariant means. Namely, suppose
T ⊂ G is right thick and choose a left Følner sequence (Fn) in G. Since T is right thick,
we can find (gn) such that

Fn · g−1
n ⊂ T, ∀n.

Note that the sequence F ′n := Fng
−1
n is still left Følner, so any left invariant mean con-

structed as a weak*-accumulation point of the averages over (F ′n) will give measure one
to the set T . In our terminlogy, T is LG-conull, where LG denotes the set of left-invariant
means on G. It is not hard to establish the converse as well; that is to say, a subset of a
countable amenable group is right thick if and only if it is LG-conull.

Recall that a set M(G) is left saturated if every closed G-invariant subset of βG sup-
ports a probability measure of the form λ for some λ in C which has the property that
if A ⊂ βG is a Borel set with λ(A) = 0, then λ(g · A) = 0 for all g ∈ G. Note that
amenability of a countable group G is equivalent to LG being left saturated.

Proposition 2.10. Suppose C ⊂ M(G) is a left saturated set. Then T ⊂ G is right thick
if and only if it is C-conull, i.e. d∗C(T ) = 1.

Proof. Suppose T is right thick. By Lemma 2.9 there exists q ∈ βG such that T q = G.
Let Z denote the orbit closure of q in βG under the left action by G on βG. Note that
T q = G implies that Z ⊂ T . Since C is left saturated, we can find λ ∈ C with λ(Z) = 1,
and thus λ(T ) = 1, which shows that T is C-conull.

Now suppose that T is C-conull and fix λ ∈ C with λ(T ) = 1. Since C is left saturated,
λ is non-singular under the left action of G on βG. In particular, the support Z of λ is
a closed G-invariant set, and Z ⊂ T . Hence, for all q ∈ Z, we have T q = G, which by
Lemma 2.9 implies that T is right thick. �

2.6. Properties of left syndetic sets. Recall that a set C ⊂ G is left syndetic if there
exists a finite set F ⊂ G such that FC = G. The following lemma isolates an important
property of these sets.

Lemma 2.11. A set C ⊂ G is left syndetic if and only if Cq is non-empty for all q ∈ βG.
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Proof. Suppose C is left syndetic and fix a finite set F ⊂ G with FC = G. Then

FCq = (FC)q = FCq = G

for all q ∈ βG. In particular, Cq is non-empty for all q ∈ βG.
Suppose C is not left syndetic and note that the set

Z := βG \GC

is a non-empty, closed and G-invariant set. Indeed, if it was empty, then by compactness
of βG we could find a finite set F in G such that FC = βG, or equivalently, FC = G.
However, this means that C is left syndetic, which contradicts our assumption. Now, for
every q ∈ Z, we see that Cq is empty, which finishes the proof. �

This lemma, combined with Lemma 2.9, now gives:

Proposition 2.12. A set C ⊂ G is left syndetic if and only if its complement Cc is not
right thick.

2.6.1. Density characterizations of left syndetic sets. We can also establish the following
analogue of Proposition 2.10.

Proposition 2.13. Suppose C ⊂ M(G) is left saturated. Then C ⊂ G is left syndetic if
and only if the lower C-density of C is positive, i.e. dC∗(C) > 0.

Proof. Let C be a left syndetic set and choose a finite set F in G such that FC = G.
Suppose dC∗(C) = 0, or equivalently, there exists λ ∈ C with λ(C) = 0. Since

1 = λ(FC) ≤
∑
f∈F

λ(f · C),

we conclude that λ(f · C) > 0 for at least one f ∈ F . Since C is left saturated and thus
in particular left non-singular, we conclude that λ(C) > 0 as well, which contradicts our
assumption, and hence dC∗(C) > 0.

Now suppose that λ(C) > 0 for all λ ∈ C. We claim that in this case, Cq is non-empty
for all q ∈ βG. By Lemma 2.11 this implies that C is left syndetic. Note that Cq is empty
if and only if q belongs to the set

Z := βG \GC.

Since C is left saturated, the set Z, being both closed and G-invariant, is non-empty if and
only there exists λ ∈ C with λ(Z) = 1, or equivalently (since λ is non-singular), λ(C) = 0.
This finishes the proof. �

3. Ergodic theory of measured groups

The aim of this section is to establish some basic properties of measured groups which
will be used in the proofs of Proposition 1.2 and Proposition 1.3.
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3.1. Affine µ-spaces. Let G be a countable group and assume that X is a Banach space
equipped with a homomorphism

ρ : G→ Isom(X),

where Isom(X) denotes the group of all linear isometries of X. Given a probability
measure µ on G, we can define a bounded operator ρ(µ) on X by the formula〈

λ, ρ(µ)x
〉

=

∫
G

〈
λ, ρ(g)x

〉
dµ(g),

for all x ∈ X and λ ∈ X∗. If K ⊂ X∗ is a weak*-compact and convex subset such that

ρ(µ)∗K ⊂ K,

then we shall say that K is an affine µ-space. Note that we do not assume that the
representation ρ∗ itself preserves the set K.

We include a proof of the following standard lemma (sometimes referred to as the
Kakutani-Markov Lemma) for completeness.

Lemma 3.1. Every affine µ-space admits a fixed point.

Proof. Suppose K ⊂ X∗ is an affine µ-space, where X is a Banach space, equipped with
a representation ρ : G→ Isom(X). Fix λ ∈ K. Since ρ(µ)∗K ⊂ K, the sequence

λn :=
1

n

n∑
k=1

ρ(µ)∗kλ

belongs to K, and thus admits a weak*-cluster point λo ∈ K by weak*-compactness. It
is readily checked that ρ(µ)∗λo = λo, which finishes the proof. �

The lemma above especially applies to the regular representation on X = C(Z), where
Z is a compact hausdorff space, equipped with an action of G by homeomorphisms. One
readily checks that the space of regular Borel probability measures P(Z) is preserved by
ρ(µ)∗, and identified with the states on C(Z), this is a weak*-compact and convex subset.
The set of ρ(µ)∗-fixed points in P(Z) will be denoted by Pµ(Z), and the elements in
Pµ(Z) will be referred to as µ-stationary (or µ-harmonic) probability measures.

Corollary 3.2. Let X and Y be compact G-spaces and suppose π : X → Y is a G-
equivariant continuous surjection. For every µ ∈ P(G) and η ∈ Pµ(Y ), there exists
ν ∈ Pµ(X) such that π∗ν = η.

Proof. Fix µ and η and define

C :=
{
ν ∈ P(X) : π∗ν = η

}
.

This set is non-empty by standard arguments, and clearly weak*-compact and convex.
Moreover, since η is µ-stationary and π is G-equivariant, this set is also an affine µ-space
(however, it is not an affine G-space!). By Lemma 3.1 there exists a µ-fixed ν point in C,
i.e. a µ-stationary measure on X which projects onto η under π. �
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3.1.1. Properties of µ-stationary measures. Recall that if Z is a G-space, i.e. a compact
hausdorff space equipped with an action of G by homeomorphisms, then a Borel proba-
bility measure ν on Z is said to be non-singular (or quasi-invariant) if ν(g · N) = 0 for
all g ∈ G, whenever N ⊂ Z is a ν-null set of Z. We now have the following proposition.

Proposition 3.3. For every measured group (G, µ) and compact G-space Z, the set Pµ(Z)
of ρ(µ)∗-fixed probability measures is non-empty. Furthermore, every ν ∈ Pµ(Z) is non-
singular.

Proof. The first assertion is contained in Corollary 3.2 with Y equal to a one-point space,
so we shall only prove that every element in Pµ(Y ) is non-singular.

Fix ν ∈ Pµ(Z) and suppose B ⊂ Z is a Borel set with ν(B) = 0. Since

ρ(µ)∗nν(B) =

∫
G

g∗ν(B) dµ∗n(g) = ν(B)

we see that ν(g−1B) = 0 for all g ∈ supp(µ)n and n ≥ 1 (G is countable). Since the
support supp(µ) is assumed to generate G as a semigroup (by admissibility), we conclude
that ν(g−1 ·B) = 0 for all g ∈ G, and thus ν is non-singular. �

3.1.2. Basic properties of the set Lµ. Recall that a set C ⊂ M(G) is left saturated if
every (non-empty) closed left G-invariant subset of βG supports at least one non-singular
probability measure of the form λ for some λ ∈ C. Also recall that Lµ denotes the set of
left µ-stationary means on G.

Corollary 3.4. For every measured group (G, µ), the set Lµ is left saturated.

Proof. Apply the proposition above to non-empty closed G-invariant subsets of the G-
space Z = βG. �

In view of Proposition 2.10 and Proposition 2.13, we have also proved the following
corollary.

Corollary 3.5. For every measured group (G, µ), a set T ⊂ G is right thick if and only
if it is Lµ-conull and a set C ⊂ G is left syndetic if and only if the lower Lµ-density is
positive.

3.2. Basic properties of µ-harmonic functions on G-spaces. Let Y be a compact
G-space, and fix an admissible (symmetric) probability measure µ on G, i.e. a probability
measure such that µ(g) = µ(g−1) for all g in G and whose support generates G as a
semigroup. We shall say that a Borel function ϕ : Y → R is µ-harmonic if

µ ∗ ϕ(y) :=

∫
Y

ϕ(g · y) dµ(g) = ϕ(y), ∀ y ∈ Y.

The following lemma shows that µ-harmonic semicontinuous functions exhibit substantial
G-invariance. This will be a crucial ingredient in the proof of Proposition 1.3.

Lemma 3.6. Suppose ϕ is a lower semicontinuos and µ-harmonic function on Y . Then
the set of minima for ϕ is non-empty, closed and G-invariant.
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Proof. Let Z denote the set of minima for ϕ. Since ϕ is lower semicontinuous, Z is non-
empty and closed, so it suffices to show that Z is G-invariant. Fix y ∈ Z and suppose
g · y /∈ Z. Since the support of µ is assumed to generate G as a semigroup, there exists
n ≥ 1 such that g belongs to

supp(µ∗n) = supp(µ)n

and thus ∫
G

ϕ(h · y) dµ∗n(h) > ϕ(y),

which contradicts our assumption that ϕ is µ-harmonic. Hence g · y ∈ Z and Z is G-
invariant. �

For µ-harmonic and continuous functions, the lemma above can be sharpened as follows.

Lemma 3.7. Let ν ∈ Pµ(Y ) and suppose ϕ is a continuous and µ-harmonic function on
the G-space Y . Then the restriction of ϕ to the support of ν is G-invariant.

Proof. It suffices to prove that for all α ∈ R, the intersection of the support of ν and the
set

Zα :=
{
y ∈ Y : ϕ(y) = α

}
⊂ Y

is G-invariant. For fixed α, we define the function

ϕα(y) := max(α, ϕ(y)), y ∈ Y.

Note that µ ∗ ϕα ≥ ϕα and that the set Zα coincides with the set of minima for ϕα for
all α. If we can show that the restriction of ϕα to the support of ν is µ-harmonic, then
Lemma 3.6 implies that the intersection of Zα with the support of ν is G-invariant.

However, since µ ∗ ϕα − ϕα ≥ 0 for all α, and∫
Y

(
µ ∗ ϕα − ϕα

)
dν = 0, ∀α ∈ R,

by µ-stationary of ν, we conclude that µ ∗ ϕα = ϕα on the support of ν. �

Corollary 3.8. Let ν ∈ Pµ(Y ) and suppose ϕ ∈ L∞(Y, ν) satisfy ρ(µ)ϕ = ϕ. Then ϕ is
essentially G-invariant.

Proof. Since L∞(Y, ν) is a commutative unital C*-algebra, the Geland-Naimark Theorem
asserts that it is isometrically isomorphic to the space of continuous functions on its (com-
pact) Gelfand spectrum Z. Furthermore, the isometric G-action on L∞(Y, ν) translates
to an action of G by homeomorphisms on Z.

Note that ν ∈ Pµ(Y ) can be thought of as a ρ(µ)-invariant state on L∞(Y, ν), and thus
as a regular µ-stationary Borel probability measure ν̄ on Z. One readily checks that ν̄
has full support.

If ρ(µ)ϕ = ϕ for some ϕ ∈ L∞(Y, ν), then the image ϕ of ϕ under the Gelfand map is
a continuous µ-harmonic function on Z, so by Lemma 3.7, it must be G-invariant on Z
(since ν̄ has full support). This clearly implies that ϕ is G-invariant, which finishes the
proof. �
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3.3. An ergodic theorem for (G, µ)-spaces. Recall that if Y is a G-space, then a
non-singular Borel probability measure ν on Y is said to be ergodic if a G-invariant Borel
set either has ν-measure zero or one. In particular, if ϕ is a G-invariant Borel function
on Y , then

ϕ =

∫
Y

ϕdν, a.e. w.r.t. ν.

Fix a probability measure µ on G and a µ-stationary Borel probability measure ν on Y .
Consider the operator ρ(µ) on C(Y ) defined by

ρ(µ)ϕ(y) =

∫
G

ϕ(g · y) dµ(g), y ∈ Y.

Note that since ν is µ-stationary, ρ(µ) extends to a bounded operator ρν(µ) on L1(Y, ν)
of norm at most one and thus also defines a bounded operator on L2(Y, ν) of norm at
most one. However, we stress that the G-action itself is far from isometric on L1(Y, ν).

For this operator, we have the following analogue of von Neumann’s Ergodic Theorem.

Lemma 3.9. Suppose ν ∈ Pµ(Y ) is ergodic. Then the L2-limit

lim
n→∞

1

n

n∑
k=1

ρν(µ)kϕ =

∫
Y

ϕdν,

exists for all ϕ ∈ L2(Y, ν).

Proof. Note that the operator norm of ρν(µ) on L2(Y, ν) is bounded by one. Hence, by
Lorch’s Ergodic Theorem (Theorem 1.2, Chapter 2 in [18]), the L2-limit exists for all ϕ
and is ρν(µ)-invariant. Since ν is ergodic, Corollary 3.8 implies that the limit is essentially
constant and thus equal to the integral. �

By a simple approximation argument, using the fact that L2(Y, ν) is a dense subspace of
L1(Y, ν), we can extend the convergence asserted in the previous lemma to L1-convergence
for all L1-functions. Furthermore, one can also prove statements about almost everywhere
convergence upon referring to classical results.

3.3.1. Estimating the upper Fµ-density. Recall that

Fµ :=
{
λ ∈ Lµ : λ|H∞(G,µ) = δe

}
.

We have already noticed that every weak*-accumulation point in `∞(G)∗ of the sequence

λn :=
1

n

n∑
k=1

µ∗n,

belongs to Fµ. In particular, if Y is a compact G-space, then

d∗Fµ(By) ≥ lim sup
n→∞

1

n

n∑
k=1

µ∗n(By)

for all y ∈ Y , where

By =
{
g ∈ G : g · y ∈ B

}
, y ∈ Y.

The following corollary shows that there is a simple lower bound for the upper Fµ-density
(and thus for the upper Lµ-density as well) for these kinds of subsets.
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Corollary 3.10. Suppose ν ∈ Pµ(Y ) is ergodic. Then, for every Borel set B ⊂ Y , there
exists a ν-conull Borel set Y ′ ⊂ Y such that

d∗Fµ(By) ≥ ν(B), ∀ y ∈ Y ′.

Proof. It suffices to prove that there exists a conull subset Y ′ ⊂ Y such that

lim sup
n→∞

1

n

n∑
k=1

µ∗k(By) > 0

for all y ∈ Y ′. Since
n∑
k=1

µ∗k(By) =
n∑
k=1

ρ(µ)∗kχB(y),

where ρ(µ) denotes the bounded operator on L2(Y, ν) introduced above, we have by
Lemma 3.9,

lim
n

1

n

n∑
k=1

ρ(µ)∗kχB = ν(B) > 0

in the L2-norm. Hence we can extract a subsequence such that the limit exists almost
everywhere along this subsequence, and this limit will be positive. �

Note that since µ is assumed to be symmetric, the proof of the previous corollary also
implies that sets of the form B−1

y are Fµ-large, for all y ∈ Y ′. This has an important
consequence as the following corollary shows.

Corollary 3.11. Suppose A ⊂ G is Lµ-large. Then there exists a Fµ-large set B ⊂ G
such that B−1 is Fµ-large as well and

AA−1 ⊃ BB−1.

Proof. Let λ be an element in Lµ such that λ is an ergodic µ-stationary probability mea-

sure on βG and the set A ⊂ βG has positive λ-measure (such elements exist by Proposition
3.13 below). The previous corollary guarantees the existence of q ∈ βG such that both

sets Aq and A
−1

q are Fµ-large.

Fix an increasing exhaustion (Fn) of G by finite sets. For every n, there exists by
Lemma 2.6 an element gn ∈ G such that

Aq ∩ Fn = (A ∩ Fn · gn) · g−1
n

In particular,

AA−1 ⊃ (A ∩ Fn · gn)(A ∩ Fn · gn)−1 = (Aq ∩ Fn)(Aq ∩ Fn)−1

for all n, and thus

AA−1 ⊃ AqA
−1

q .

Hence, if we set B := Aq, then this set satisfies the desired properties. �
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3.4. Poisson boundaries of a measured groups. Recall that a bounded function f
on G is left µ-harmonic (note that we shall always assume that µ is symmetric) if the
equation

µ ∗ f(g) :=

∫
G

f(hg) dµ(h) = f(g)

holds for all g ∈ G. Clearly, a constant function is always left µ-harmonic, and there are
instances when constants are the only (bounded) µ-harmonic functions (e.g. when G is a
countable abelian group and µ is any admissible probability measure on G).

We shall denote by H∞l (G, µ) the space of all bounded left µ-harmonic functions on G.
Easy examples show that the pointwise product of two left µ-harmonic functions may fail
to be left µ-harmonic, so H∞l (G, µ) is not a sub-algebra of `∞(G), and thus do not quite
fit onto the framework we have set up so far.

However, there is another product (which is a special case of a more general construction
in operator system theory called the Choi-Effros product), which does turnH∞l (G, µ) into
an algebra. In our setting, this product, here denoted by �, can be defined by

(ϕ�ψ)(g) := lim
n→∞

∫
G

ϕ(hg)ψ(hg) dµ∗n(h), g ∈ G,

for ϕ, ψ ∈ H∞(G, µ). One can show that the limit exists by a simple use of the Martingale
Convergence Theorem. We refer the reader to [2] for details about this product; especially
the fact that (H∞l (G, µ),�) is a commutative C*-algebra.

Another serious deviation from the set up so far is that H∞l (G, µ) is invariant under
the right regular representation r on `∞(G), but not necessarily under the left regular
representation. This right action on H∞(G, µ) gives rise to a (right) action of G by
homeomorphisms on the Gelfand spectrum

B := ∆(H∞l (G, µ)),

which we shall consistently write as a left action, i.e. g · b := bg−1, for b ∈ B and g ∈ G.
Note that the evaluation map δe on H∞l (G, µ) is a r(µ)-invariant state, and thus corre-

sponds to a µ-stationary probability measure νo on B. Indeed,〈
r(µ)∗δe, f

〉
=

∫
G

f(h) dµ(h) =
〈
δe, f

〉
, ∀ f ∈ H∞(G, µ).

If f ∈ C(B), we define f̂ ∈ `∞(G) by

f̂(g) :=

∫
B

f(g−1 · b) dνo(b), g ∈ G.

Since µ is symmetric, f̂ belongs to H∞l (G, µ) as the following calculation shows.∫
G

f̂(hg) dµ(h) =

∫
G

∫
B

f(g−1 · h−1 · b) dνo(b) dµ(h)

=

∫
B

f(g−1 · b) d(µ ∗ νo)(b) = f̂(g), ∀ g ∈ G.

Note that we can also write f̂ as

f̂(g) =
〈
ν, r(g)f

〉
C(B)

=
〈
r(g)∗δe, f

′〉
H∞l (G,µ)

= f ′(g), ∀ g ∈ G,
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where f ′ denotes the image of f ∈ C(B) in H∞l (G, µ) under the Gelfand map (for the

Choi-Effros product), so we conclude that f̂ completely determines f . This observation
suggests the following proposition, whose proof can be found in [2].

Proposition 3.12. The µ-stationary probability measure νo on B is ergodic and the map

f 7→ f̂

is an isometric ∗-isomorphism between L∞(B, νo) and H∞(G, µ).

Remark 3.1. The Gelfand spectrum of H∞l (G, µ) with the Choi-Effros product, together
with the measure νo, is sometimes referred to as the Poisson boundary of (G, µ). However,
since this measure space is only standard when H∞l (G, µ) reduces to the constants, one
often prefers to choose other (countably generated) Borel representations which will yield
the same L∞-space, and then such a space is also referred to as the Poisson boundary
of (G, µ). In this paper, we shall only work with the above realization of the Poisson
boundary.

3.5. Left ergodicity of Fµ ⊂M(G). As we have seen, the space Pµ(Y ) of µ-stationary
Borel measures on a G-space Y , is always a non-empty, weak*-compact and convex set.
In particular, by Krein-Milman’s Theorem, it has extremal points. We shall denote the
set of extremal points by Ext(Pµ(Y )).

Let Ergµ(Y ) denote the set of µ-stationary ergodic probability measures on Y . In the
weak*-topology, this is a nice Gδ-set if Y is second countable. When Y is not second
countable, then there is no reason to expect this set to be even Borel measurable. This
is particular the case for the Poisson boundary B defined in the previous subsection. In
any case, we do have the following equality of sets.

Proposition 3.13. For every measured group (G, µ) and compact G-space Y , we have

Ext(Pµ(Y )) = Ergµ(Y ).

In particular, Ergµ(Y ) is non-empty.

Proof. First note that if ν ∈ Pµ(Y ) and X ⊂ Y is a G-invariant ν-measurable set with
measure

0 < ν(X) < 1,

then the re-normalized restriction of ν to X clearly belongs to Pµ(Y ). Hence, if ν is not
ergodic, it cannot be extremal in Pµ(Y ).

The converse is slightly more difficult. Suppose ν is not extremal, but still ergodic, so
that we can write

ν = α1 · ν1 + α2 · ν2,

for some positive α1, α2 with α1 + α2 = 1, where ν1, ν2 ∈ Pµ(Y ).
Note that both ν1 and ν2 must be absolutely continuous with respect to ν, so by

Radon-Nikodym’s Theorem, it suffices to prove that if ρ ∈ L1(Y, ν) has the property that
the dν ′ = ρdν is a µ-stationary, probability measure, then ρ is equal to one ν-almost
everywhere.
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Let r > 0 and let ρr denote the cut-off of ρ for values greater than r so that ρr is a
bounded ν-measurable function. Note that∫

Y

ϕdν ′ =

∫
Y

Anϕdν
′ ≥
∫
Y

(
Anϕ

)
ρr dν

for all ϕ ∈ L∞(Y, ν)+, where

Anϕ :=
1

n

n∑
k=1

ρ(µ)∗kϕ.

Here, ρ(µ) is the bounded operator on L2(Y, ν) introduced in Lemma 3.9. Since ν is
ergodic, this lemma applies, and thus the sequence Anϕ converges to the ν-integral of ϕ
in the L2-norm. Hence, for all ϕ ∈ L∞(Y, ν)+, we have∫

Y

ϕdν ′ ≥ lim
n

〈
ρr, Anϕ

〉
L2(Y,ν)

=
(∫

Y

ρr dν
)
·
∫
Y

ϕ dν.

Upon letting r tend to infinity, we see that∫
Y

ϕdν ′ ≥
∫
Y

ϕ dν, ∀ϕ ∈ L∞(Y, ν)+

which readily implies that ρ ≥ 1 ν-almost everywhere. However, since the ν-integral
equals one, we conclude that ρ must in fact be ν-almost everywhere equal to one, which
finishes the proof. �

Recall that a subset C ⊂ Lµ is left ergodic if τ ∗λ is an ergodic µ-stationary Borel
probability measure on βG whenever λ is an extremal point in C, where τ : C(βG) →
`∞(G) is the G-equivariant map defined by

τ(ϕ)(g) := ϕ(g · ē), g ∈ G.

The set of Furstenberg-Poisson means is defined by

Fµ :=
{
λ ∈ Lµ : λ|H∞l (G,µ) = δe

}
.

The following corollary isolates one of the most important properties of Fµ which will be
used in the proof of Theorem 1.1.

Corollary 3.14. For every measured group (G, µ), the set Fµ ⊂M(G) is left ergodic.

Proof. Let λ ∈ Fµ and suppose that the µ-stationary probability measure λ on βG is not

ergodic. By Lemma 3.13, λ is not extremal in the set Pµ(βG), so we can write

λ = α · λ1 + α2 · λ2,

for some λ1, λ2 ∈ Pµ(Y ) and positive α1, α2 with α1 + α2 = 1. We claim that the cor-
responding means λ1 and λ2 must belong to Fµ, and thus λ is not extremal Fµ, which
finishes the proof.

To prove this claim, we first note that restriction of λ to H∞l (G, µ) is µ-stationary on
the right, i.e.

λ(r(µ)f) = λ(f), ∀ f ∈ H∞l (G, µ),
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where r denotes the right regular representation on H∞l (G, µ). Note that if f is left
µ-harmonic, then so is r(µ)kf for all k and thus

f(e) = α1 · λ1(r(µ)kf) + α2 · λ2(r(µ)kf)

for all left µ-harmonic functions f and for all k. In particular, upon averaging over k, we
may assume that the restrictions to H∞l (G, µ) of both λ1 and λ2 are fixed by r(µ).

Recall that the map f 7→ f̂ from L∞(B, νo) to H∞l (G, µ) defined in Proposition 3.12 is
an isometry, so the functionals

ν1(f) := λ1(f̂) and ν2(f) := λ2(f̂)

can be viewed as regular Borel probability measures on the Poisson boundary B of (G, µ).
Furthermore,

λ(f̂) = f̂(e) = νo(f), ∀ f ∈ C(B).

We wish to prove that

νo = ν1 = ν2.

Note that since

νo = α1 · ν1 + α2 · ν2

and νo is ergodic by Proposition 3.12, it suffices to show that ν1 and ν2 are µ-stationary.
Indeed, by Proposition 3.13, νo is extremal in Pµ(B), so such an equation must force all
measures to be equal.

Since the restrictions of λ1 and λ2 to H∞l (G, µ) satisfy

r(µ)∗λi = λi, i = 1, 2,

we have

µ ∗ νi(f) =

∫
G

∫
B

f(g · b) dνi(b) dµ(g)

=

∫
G

∫
G

(∫
B

f(g · h−1 · b) dνo(b)
)
dλi(h) dµ(g)

=

∫
G

∫
G

(∫
B

f((h · g−1)−1 · b) dνo(b)
)
dλi(h) dµ(g)

=

∫
G

(∫
B

f(h−1 · b) dνo(b)
)
d(r(µ)∗λi)(h)

= r(µ)∗λi(f̂) = λi(f̂) = νi(f),

for i = 1, 2 and all f ∈ C(B). Thus ν1 and ν2 belong to Pµ(B), which finishes the
proof. �

3.6. Failure of left syndeticity for difference sets. We shall now construct examples
of countable measured groups (G, µ) and Fµ-large sets A ⊂ G with the property that
their difference sets AA−1 are right piecewise left syndetic but not left syndetic.
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3.6.1. Basic setup. Let G denote the free group on the free symbols {a, b}. Let T = R/Z
and fix an irrational number in T. Also choose a homeomorphism T on T which fixes two
distinct points x+ and x− on T and has the property that for every open neighborhood U
of x+ and every closed subset B ⊂ T which does not contain x−, there exists n such that

T n(B) ⊂ U.

We define an action of G on T by

a · x = x+ α and b · x = T (x), x ∈ T.

Lemma 3.15. For every non-empty open set U ⊂ T and proper closed subset B ⊂ T,
there exists g ∈ G such that g ·B ⊂ U .

Proof. Since α is irrational, the restricted action by the subgroup aZ is minimal, and thus
we can find m,n ∈ Z such that am ·U is an open neighborhood of x+ and an ·B does not
contain x−. By the defining property of T , we can now find k ∈ Z such that

bk · (am ·B) ⊂ an · U,
or equivalently, (a−n bk am) ·B ⊂ U . �

Corollary 3.16. For every finite set F ⊂ G and closed subset A ⊂ T with empty interior,
there exists g ∈ G such that FA ∩ g · A is an empty subset of S1.

Proof. By Lemma 3.15 it suffices to show that FA is a proper (closed is immediate) subset
for every finite set F ⊂ G. Indeed, if this is the case, then we can choose

B := A and U := (FA)c

and find (using the previous lemma) an element g ∈ G such that g ·B ⊂ U , or equivalently,

FA ∩ g · A = ∅.
However, if FA = T for some finite set, then by Baire’s Category Theorem, at least one
of fA, with f ∈ F , has non-empty interior. Since G acts by homeomorphisms, this would
imply that A has non-empty interior, which we have assumed it does not have. �

Fix an admissible (symmetric) µ ∈ P(G) and choose an ergodic µ-stationary Borel
probability measure ν on T. The support of ν is a non-empty closed G-invariant subset,
so in particular it is invariant under the dense subgroup Z · α ⊂ T, and must thus be
equal to T.

Recall that if A is any subset of T and x is a point in T, then

Ax :=
{
g ∈ G : g · x ∈ A

}
⊂ G.

The following lemma is now an immediate consequence of Corollary 3.10.

Lemma 3.17. For every Borel set A ⊂ T with positive ν-measure, there exists a ν-conull
Borel set X ⊂ T such that Ax ⊂ G is Fµ-large for all x ∈ X.

Before we can construct our examples, we need the following general result.

Lemma 3.18. Let X be a compact separable hausdorff space and let ν be a non-atomic
regular Borel probability measure on X with full support. Then there exists a closed set
B ⊂ X with empty interior and positive ν-measure.
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Proof. Since ν is a non-atomic and regular Borel probability measure, every point x in X
admits a decreasing sequence (Un) of open neighborhoods with

ν(Un) ≤ 1

n
, ∀n.

Let Y be a countable dense subset of X and fix an enumeration (yn) of the elements in
the set Y . Let (qn) be a sequence of positive real numbers with∑

n

qn < 1.

Since ν has full support, we can, for every n, choose a neighborhood Un of yn with ν-
measure at most qn. If we let

U =
⋃
n

Un,

then, since Y is dense, U is open and dense, and thus B = U c is closed with no interior
and

ν(B) = 1− µ(B) ≥ 1−
∑
n

qn > 0,

which finishes the proof. �

Remark 3.2. The assumption that X is separable is crucial. Indeed, let (Z, η) be any
non-atomic probability measure space and let X denote the Gelfand spectrum of L∞(Z, η).
Then X is a compact (non-separable) hausdorff space and the corresponding probability
measure η̄ on X (viewing η as a positive linear functional on L∞(Z, η)) is a (non-atomic)
normal measure (with full support), i.e. for every Borel set B ⊂ X, we have

η̄(Bo) = η̄(B).

In particular, a Borel subset of X has positive ν-measure if and only if B has non-empty
interior. See Chapter 1 in [11] for references.

Since ν has full support and T is separable, the previous lemma asserts that there is
a proper closed subset A ⊂ T with positive ν-measure, but empty interior. By Lemma
3.17 there exists a ν-conull Borel set X ⊂ T such that the sets Ax ⊂ G are Fµ-large for
all x ∈ X.

We claim that the difference set AxA
−1
x is not left syndetic. Indeed, assume that

FAxA
−1
x = G for some x ∈ X. Then, for all g ∈ G, we have

FAx ∩ g · Ax = (FA ∩ g · A)x 6= ∅.
In particular, the set FA∩g ·A ⊂ S1 is non-empty for all g ∈ G. However, this contradicts
Corollary 3.16.

4. Proof of Proposition 1.2

Let (G, µ) be a countable measured group. A set C ⊂ Lµ is left ergodic if every extremal
element in C corresponds to an ergodic µ-stationary regular Borel probability measure on
the Stone-Čech compactification βG (with respect to the induced left action) via the
Gelfand map

τ(ϕ)(g) = ϕ(g · ē), g ∈ G,



32 MICHAEL BJÖRKLUND AND ALEXANDER FISH

By Corollary 3.14, the set Fµ ⊂ Lµ of Furstenberg-Poisson means on G is left ergodic, so
Proposition 1.2 follows immediately from the following lemma.

Lemma 4.1. Suppose C ⊂ M(G) is left ergodic and A ⊂ G is C-large. Then,

sup d∗C(FA) = 1,

where the supremum is taken over all finite subsets F ⊂ G.

Proof. By Corollary 2.2, there exists an extremal λ ∈ C such that

d∗C(A) = λ′(A) = λ(A) > 0.

Since C is left ergodic, λ is ergodic for the induced left action of G on βG. In particular,
by the σ-additivity of λ, we have

1 = λ(GA) = supλ(FA),

where the supremum is taken over all finite subsets F ⊂ G. Since FA is clopen in βG for
every finite F , we conclude that

1 = supλ(FA) = supλ′(FA) ≤ sup d∗C(FA),

which finishes the proof. �

5. Proof of Proposition 1.3

Recall that a set C ⊂ G is left syndetic (or left relatively dense) if there exists a finite
set F ⊂ G such that FC = G. By Lemma 2.11, this is equivalent to positivity of the
lower Lµ-density.

Proposition 5.1. Suppose C ⊂ G is left syndetic. Then

dLµ∗ (A−1C) ≥ d∗Fµ(A)

for all A ⊂ G.

This proposition can be used to give a quick proof of Proposition 1.3.

Proof of Proposition 1.3. Let (G, µ) be a countable measured group, and assume for con-
tradiction that A,B ⊂ G satisfy

d∗Fµ(A) + d∗Lµ(B) > 1,

but the product set AB is not right thick. Then, by Proposition 2.12, the complementary
set C := (AB)c is syndetic, and since A−1C ⊂ Bc, we have

dLµ∗ (A−1C) ≤ dLµ∗ (Bc) = 1− d∗Lµ(B) < d∗Fµ(A).

However, this contradicts Proposition 5.1. �
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5.1. Proof of Proposition 5.1. Recall that if A is a subset of a countable group G, we
denote by A the corresponding ”closure” set in the Stone-Čech compactification βG. If
q ∈ βG, we define

Aq :=
{
g ∈ G : g · q ∈ A

}
⊂ G.

In particular, A = Aē.

Lemma 5.2. Let A ⊂ G and η ∈ Lµ. For every Borel set D ⊂ βG, the function

ψ(q) := η(A
−1

q D), q ∈ βG,
is µ-harmonic and equal to the supremum of an increasing sequence of continuous func-
tions on βG.

Proof. Fix an increasing exhaustion (Fn) of G by finite sets, and define

ψn(q) := η((Aq ∩ Fn)−1D), q ∈ βG,
for all n. By σ-additivity, ψ = supn ψn, so it suffices to show that ψn is continuous for
every n.

Fix q ∈ βG and n. By Lemma 2.6, the set of p ∈ βG such that

Ap ∩ Fn = Aq ∩ Fn
and thus ψn(p) = ψn(q), is clopen. This clearly implies that ψn is continuous.

To show that ψ is µ-harmonic, we first note that

Ag·q = Aq · g−1, ∀ g ∈ G,
and thus,

ψ(g−1 · q) = η(g−1 · A−1

q D) =

∫
βG

χ
A
−1
q D

(g · p) dη(p).

Since µ ∗ η = η, we have µ ∗ ψ = ψ (remember that µ is symmetric), which finishes the
proof. �

Lemma 5.3. Suppose A ⊂ G. If C ⊂ G is left syndetic, then

sup
η∈Fµ

∫
βG

η(C
−1

q A) dλ(q) ≥ d∗Fµ(A),

for all λ ∈ Lµ.

Proof. Fix A,C ⊂ G, with C left syndetic, and λ and η in Lµ. By Lemma 5.2, the
function

ψ(q) := η(C
−1

q A), q ∈ βG,
is a lower semicontinuous µ-harmonic function on βG. By Lemma 3.6, the set Z of min-
ima for ψ is a non-empty, closed and G-invariant set, and since C is left syndetic, Cq is
non-empty for all q ∈ βG by Lemma 2.11.

In particular, there exists qo ∈ Z such that e ∈ Cqo . Hence,

η(A) ≤ η(C
−1

qo A) ≤
∫
βG

η(C
−1

q A) dλ(q).

Since λ, η ∈ Lµ are arbitrary, we are done. �
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The following proposition is the main result of this subsection. Combined with Lemma
5.3 above, it immediately implies Proposition 5.4.

Proposition 5.4. Suppose A,C ⊂ G. Then there exists an extremal λ ∈ Lµ such that

dLµ∗ (A−1C) ≥ sup
η∈Fµ

∫
βG

η(C
−1

q A) dλ(q).

5.2. Proof of Proposition 5.4.

Lemma 5.5. Suppose ψ is a bounded µ-harmonic function on βG, equal to the supremum
of an increasing sequence of continuous functions. Then,

ψ(ē) ≥ sup
η∈Fµ

∫
βG

ψ dη.

Proof. Note that the function

ϕ(g) := ψ(g · ē), g ∈ G,
belongs to H∞l (G, µ), and thus

η(ϕ) = ϕ(e) = ψ(ē),

for all η ∈ Fµ. By Lemma 2.3,

η(ϕ) ≥
∫
βG

ψ(q) dη(q),

for all η ∈ Fµ, which finishes the proof. �

Proof of Proposition 5.4. Fix A,C ⊂ G. By Corollary 2.2, there exists an extremal λ ∈ Lµ
such that

dLµ∗ (A−1C) = λ′(A−1C) = λ′((A−1C)ē).

Since A−1C is a countable union of clopen sets in βG, Lemma 2.4 applies and

λ′((A−1C)ē) ≥ λ(A−1C).

Define the function
ψ(q) := λ(A

−1

q C), q ∈ βG.
By Lemma 5.2, ψ is µ-harmonic and equal to the supremum of an increasing sequence of
continuous functions. Hence, Lemma 5.5 applies, and

ψ(e) = λ(A
−1

ē C) ≥
∫
βG

λ(A
−1

q C) dη(q),

for all η ∈ Fµ. By Fubini’s Theorem, we have∫
βG

λ(A
−1

q C) dη(q) =

∫
βG

∫
βG

χG(A×C) dλ⊗ η =

∫
βG

η(C
−1

q A) dλ(q),

which finishes the proof. �

6. Proof of Proposition 1.4

The proof of Proposition 1.4 will be done in several steps. Some of these steps are quite
standard and well-known to experts, at least for amenable groups, but we still give the
proofs for completeness.
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6.1. Reductions. We shall try to re-cast Proposition 1.4 in a more C*-algebraic lan-
guage. This will simplify, and hopefully conceptualize, the approach.

Recall that if B is a left G-invariant unital sub-C*-algebra of `∞(G), then the Gelfand
space ∆(B) of B is a compact hausdorff space, equipped with an action of G by homeomor-
phisms, and admitting a G-transitive point xo. Furthermore, there is a left G-equivariant
∗-isomorphism

τB : C(∆(B))→ B
given by

τB(f)(g) := f(g · xo), g ∈ G.
The composition of τB and the inclusion map of B into `∞(G) gives rise to an left G-
equivariant injective ∗-morphism and thus, by the Gelfand-Naimark correspondence, to a
left G-equivariant surjection

πB : βG→ ∆(B),

where βG denotes the Stone-Čech compactification of G. Recall that the set M(G) of
means on G (or equivalently, of states on `∞(G)) corresponds to the set P(βG) of regular
Borel probability measures on βG. Note that the map πB also induces a continuous affine
map

(πB)∗ : P(βG)→ P(∆(B)).

We denote the set of all positive elements in B (i.e. the set of all non-negative functions
on G which belong to B) by B+. Note that the transpose map

π∗B : C(∆(B))→ C(βG)

is positive, i.e. π∗Bϕ is positive whenever ϕ belongs to B+.

Proposition 6.1. Let B ⊂ `∞(G) be a unital sub-C*-algebra and suppose C ⊂ G. For
every λ ∈ P(βG), there exists a λ-measurable set C ′ ⊂ ∆(B) with

C ⊂ π−1
B (C ′),

modulo λ-null sets, such that whenever ϕ ∈ B+ satisfies〈
π∗Bϕ, χC

〉
L2(βG,λ)

= 0,

then ∫
C′
ϕd(πB)∗λ = 0.

Proof. Fix λ ∈ P(βG) and consider the indicator function χC as an element in L2(βG, λ).
Note that

V := L2(∆(B), (πB)∗λ)πB ⊂ L2(βG, λ)

is a closed subspace, consisting of those elements in L2(βG, λ) which are pull-backs of
square-integrable elements on ∆(B) under the map π∗B, so we can write

χC = ρB + ρo

where ρB denotes the orthogonal projection of χC onto V . Since this projection is positive,
the function ρB is non-negative and〈

(πB)∗ϕ, χC
〉
λ

=
〈
ϕ, ρB

〉
(πB)∗λ

= 0.
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Choose a λ-measurable representative of ρB and define

C ′ :=
{
x ∈ ∆(B) : ρB(x) > 0

}
⊂ ∆(B).

Clearly, the inclusion C ⊂ π−1
B (C ′) holds modulo λ-null sets in βG and since ϕ is non-

negative, we have ∫
C′
ϕd(πB)∗λ = 0,

which finishes the proof. �

6.1.1. Left amenable sub-C*-algebras. We shall say that a left G-invariant sub-C*-algebra
B of `∞(G) is left amenable if there exists a left G-invariant state on B. Via the Gelfand-
Naimark’s correspondence, this is equivalent to saying that there exists a G-invariant
regular Borel probability measure on the Gelfand space ∆(B) of B.

For an amenable sub-C*-algebra B of `∞(G), we let LB denote the (non-empty) weak*-
compact and convex set of all states on `∞(G) which restricts to a left invariant state on
the algebra B.

Let B ⊂ G and let B denote the Bebutov algebra of B, i.e. the smallest left G-
invariant unital sub-C*-algebra of `∞(G) which contains the indicator function of B. In
the introduction, we called a set B strongly non-paradoxical if the Bebutov algebra of B
is amenable and there exists λ in LB which gives positive measure to B.

Since χB is idempotent in B, there exists a clopen subset B′ ⊂ ∆(B) such that

τB(χB′) = χB.

Recall from Subsection 2.3 that we also introduced the notation B for the clopen set which
B corresponds to via the isomorphism between `∞(G) and C(βG). From the discussions
above, it should be clear that

B = π−1
B (B′).

Recall that the non-paradoxical density of B was defined earlier by

d∗np(B) := d∗LB(B).

By Corollary 2.2, there always exists a state λ ∈ LB which maximizes the right hand side.
Let λ denote the corresponding regular Borel probability measure on βG and set

η′ := (πB)∗λ.

Note that η′ is a G-invariant Borel probability measure on ∆(B). It is not hard to see
that η′ must be ergodic (since λ is extremal) and

d∗np(B) = η′(B′) = sup
ν
ν(B′),

where the supremum is taken over all G-invariant probability measures on ∆(B).

Corollary 6.2. Let A,B ⊂ G and suppose B is strongly non-paradoxical. For every
admissible µ ∈ P(G), there exist λ ∈ Pµ(βG) such that the measure η′ := (πB)∗λ on ∆(B)
is G-invariant and ergodic with

d∗np(B) = η′(B′)

and a Borel set C ′ ⊂ ∆(B) with

AB ⊃ π−1
B (C ′)c
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modulo λ-null sets in βG, such that

η′(a ·B′ ∩ C ′) = 0, ∀ a ∈ A.

Proof. From the discussion above, we know that there exists an ergodic and G-invariant
regular Borel probability measure η′ on ∆(BB) with

d∗np(B) = η′(B′).

Fix µ ∈ P(G). Since η′ clearly belongs to Pµ(∆(B)), Corollary 3.2 guarantees the exis-
tence of λ ∈ Pµ(βG) such that

(πB)∗λ = η′.

Since BB is left G-invariant, the closed subspace

V := L2(∆(B), (πB)∗λ)πB ⊂ L2(βG, λ)

is G-invariant as well, so the function π∗Bϕg belongs to V for all g ∈ G, where

ϕg := χB′(g
−1·).

Let C := (AB)c and note that

λ(a ·B ∩ C) =
〈
π∗B ϕa, χC

〉
L2(βG,λ)

= 0,

for all a ∈ A. By Proposition 6.1, there exists a λ-measurable set C ′ ⊂ ∆(BB) with

C ⊂ π−1
B (C ′)

modulo λ-null sets in βG such that∫
C′
ϕa dη

′ = η′(a ·B′ ∩ C ′) = 0

for all a ∈ A. �

Recall from Section 2 that the Fourier-Stiltjes algebra B(G) of a countable group G is
defined as the ∗-algebra generated by all matrix coefficients of unitary representations of
G. The uniform closure of B(G) in `∞(G) will here be referred to as the Eberlein algebra
of G and we shall denote its (compact) Gelfand spectrum by eG. Let λo denote the unique
left and right invariant state on E(G) and write

E(G) = AP(G)⊕ Eo(G),

where

Eo(G) :=
{
ϕ ∈ E(G) : λo(|ϕ|2) = 0

}
.

For a given ϕ ∈ E(G), we shall write

ϕ = ϕap + ϕo,

with ϕap ∈ AP(G).
Here, AP(G) denotes the C*-algebra of almost periodic functions on G. Its Gelfand

spectrum bG we shall refer to as the Bohr compactification of G. As was mentioned
in Section 2, this compact hausdorff space can be endowed with a jointly continuous
multiplication which gives bG the structure of a compact hausdorff group. In particuar,
bG admits a Haar probability measure m.
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Because of the decomposition above, we see that

L2(eG, λo) ' L2(bG,m)π,

where π : eG → bG is the G-equivariant map implementing the inclusion of AP(G) in
E(G). Indeed, the function ϕo above is equivalent to the null function in L2(eG, λo).

Furthermore, since m is the unique G-invariant measure on bG, we have

π∗λo = m.

In particular, if A ⊂ eG is a Borel set and ϕ ∈ C(eG) is non-negative, with the property
that ∫

A

ϕdλo = 0,

then there exists a Borel set A′ ⊂ bG with A ⊂ π−1(A′) such that∫
A′
ϕap dm = 0,

In particular, there exists a Borel set A′′ ⊂ A′ with m(A′′) = m(A′) on which ϕap vanishes
identically.

Recall that FS denotes the weak*-compact and convex set of means onG which restricts
to λo on B(G) (and thus on E(G)). The following corollary is now an almost immediate
consequence of the discussion above.

Corollary 6.3. Let A ⊂ G be FS-large and suppose ϕ ∈ B(G)+ vanishes on A. Then
there exists a Borel set A′ ⊂ bG with

m(A′) ≥ d∗FS(A)

such that ϕap vanishes on A′.

Proof. By Corollary 2.2, there exists λ ∈ FS such that

d∗FS(A) = λ′(A).

Let ϕ̄ denote the continuous function on βG corresponding to ϕ. Note that ϕ̄ is non-
negative. Since ϕ ∈ E(G), we can write

ϕ̄ = π∗E(G) ϕ
′

for some ϕ′ ∈ C(eG), which is again non-negative. By assumption,〈
π∗E(G)ϕ

′, χA〉L2(βG,λ) = 0,

and λo = (πE(G))∗λ. Hence, by Proposition (6.1), there exists a measurable set A′ ⊂ eG
with

λo(A
′) ≥ λ(A) = d∗FS(A)

such that ∫
A′
ϕ′ dλo = 0.

The corollary now follows from the discussion above. �
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6.2. Compact vectors and the Eberlein decomposition. The aim of this subsection
is to explicate the decomposition 2.2 for elements in B(G). We stress that the material
covered here is quite standard (at least for abelian, or more generally amenable, groups),
and is certainly well-known to experts. We collect here a few basic results for completeness.

The basic setting can be described as follows. Let (H, ρ) be a unitary representation
on a Hilbert space H (not necessarily separable). Let Hρ denote the closed subspace of
ρ-fixed vectors and write Pρ for the corresponding orthogonal projection.

Given x, y ∈ H, we define the matrix coefficient at (x, y) by

ϕρx,y(g) =
〈
x, ρ(g)y

〉
, g ∈ G.

Recall that λo denotes the unique left and right invariant mean on B(G).

The following extension of the (weak) von Neumann’s Ergodic Theorem will be quite
useful.

Lemma 6.4. For all x, y ∈ H, we have

λo(ϕ
ρ
x,y) =

〈
Pρx, Pρy

〉
.

Proof. It suffices to establish the identity on a dense subspace ofH. Note that the identity
is trivial if either x or y belongs to Hρ, and if x (or y) is of the form

x = z − ρ(go)
−1z

for some z ∈ H and go ∈ G, then

ϕρx,y(g) = 〈z, ρ(g)y〉H − 〈z, ρ(go · g)y〉H
for all g ∈ G. Since λo is left-invariant, we see that in this case,

λo(ϕ
ρ
x,y) = 0.

Hence it suffices to show that if x ∈ H and

〈x, z − ρ(g)−1z〉H = 0

for all z ∈ H and g ∈ G, then x ∈ Hρ. Equivalently, for all g ∈ G and z ∈ H,

〈x− ρ(g)x, z〉H = 0,

which clearly implies that ρ(g)x = x for all g ∈ G and thus x ∈ Hρ. �

Remark 6.1. Note that the proof does not utilize the uniqueness of λo. In fact, this
uniqueness is a consequence of the proof.

Recall that a vector x ∈ H is compact (with respect to ρ) if the orbit ρ(G)x ⊂ H is
pre-compact. Alternatively, the closure of the cyclic span of x can be decomposed into a
direct sum of finite-dimensional representations (by the Peter-Weyl Theorem). We denote
the closed subspace of ρ-compact vectors by Hc.

The following lemma provides a convenient way of producing compact vectors for a
general representation.
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Lemma 6.5. Suppose z ∈ (H⊗H)ρ⊗ρ. Then the operator Kz : H → H defined by〈
Kzx, y

〉
=
〈
z, x⊗ y

〉
is compact and ρ-intertwining. In particular, Im(Kz) ⊂ Hc.

Proof. Since H⊗H is the Hilbert space completion of the algebraic tensor product, there
exists a net (zα) of finite sums of basic tensors such that zα → z in the Hilbert tensor
norm. In particular,

sup
‖x‖H=1

‖Kzαx−Kzx‖H = sup
‖x‖H=1

(
sup
‖y‖H=1

∣∣〈zα − z, x⊗ y〉H⊗H∣∣)
≤ sup

‖x‖H=1

(
sup
‖y‖H=1

‖zα − z‖H⊗H · ‖x⊗ y‖H⊗H
)

= ‖zα − z‖H⊗H → 0.

Note that if
zα =

∑
i∈Fα

xα,i ⊗ yα,i

for some finite set Fα and xα,i, yα,i ∈ H, then

Kzαx =
∑
i∈Fα

〈xαi , x〉H · yαi ,

so in particular Kzα has finite rank for all α. Hence Kzα is compact for every α and Kz is
the norm limit of a net of such operators, and thus compact. Finally, if z ∈ (H⊗H)ρ⊗ρ,
then

〈Kzρ(g)x, y〉H = 〈z, ρ(g)x⊗ y〉H⊗H
= 〈(ρ⊗ ρ)(g)z, ρ(g)x⊗ y〉H⊗H
= 〈z, x⊗ ρ(g)−1y〉H⊗H
= 〈Kzx, ρ(g)−1y〉H
= 〈ρ(g)Kzx, y〉H

for all g ∈ G and x, y ∈ H. We conclude that Kz : H → H is ρ-intertwining, which
finishes the proof. �

We can now prove an explicit form of the decomposition 2.2 for elements in B(G).

Proposition 6.6. Suppose (ρ,H) is a unitary representation of G. If v, w ∈ H and

ϕ(g) =
〈
ρ(g)v, w

〉
H, g ∈ G,

then ϕ ∈ B(G) and
ϕap(g) =

〈
ρ(g)Pcv, Pcw

〉
H, g ∈ G,

where Pc denotes the orthogonal projection onto Hc.

Proof. We wish to show that if x, y ∈ H, then the function defined by

φo(g) :=
〈
x, ρ(g)y

〉
H − 〈Pc(x), ρ(g)Pc(y)〉H

belongs to Bo(G). Since the function clearly belongs to B(G), this is amounts to show
that

λo(|φo|2) = 0.
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Define

xo := x− Pcx and yo := y − Pcy,
and note that

|φo(g)|2 = 〈xo ⊗ xo, (ρ⊗ ρ)(g)yo ⊗ yo〉H⊗H.
By Lemma 6.4, we have

λo(|φo|2) = 〈Pρ⊗ρ xo ⊗ xo, Pρ⊗ρ yo ⊗ yo〉.
Let z := Pρ⊗ρ(xo ⊗ xo) and note that we can now write

λo(|φo|2) = 〈Kzyo, yo〉,
where the operator Kz : H → H is defined as in Lemma 6.5. By the same lemma,
Kzyo ∈ Hc, and since yo is orthogonal to Hc, we conclude that

λo(|φo|2) = 〈Kzyo, yo〉 = 0,

which finishes the proof. �

6.3. Applications to product sets. Let us now connect all this to our previous discus-
sions about product sets.

6.3.1. Koopman representations. Let X be a compact G-space and suppose ν is a G-
invariant and ergodic Borel probability measure on X. The G-action on X gives rise to a
unitary representation ρ (the so called Koopman representation) of G on L2(X, ν) by

ρ(g)f = f(g−1·), g ∈ G.
If B,C ⊂ X are ν-measurable sets, then the function

ϕ(g) := ν(g ·B ∩ C) =
〈
ρ(g)χB, χC

〉
L2(X,ν)

, g ∈ G,

is an element in B(G) (and hence in E(G)) and by Proposition we have

ϕap(g) =
〈
ρ(g)PcχB, PcχC

〉
L2(X,ν)

,

where Pc denotes the projection onto the ρ-compact vectors in L2(X, ν).

6.3.2. Kronecker-Mackey factors. We shall need the following classical result of Mackey.

Proposition 6.7 ([20]). There exists a ν-conull set X ′ ⊂ X, a compactification (K, ιK)
of G, a closed subgroup Ko < K and a G-equivariant measurable map π : X ′ → K/Ko

such that

L2(X,µ)c = L2(K/Ko,mo)
π,

where mo denotes the Haar probability measure on K/Ko.

The compact homogeneous space K/Ko is often referred to as the Kronecker (or
Kronecker-Mackey) factor of (X, ν).

We shall use Mackey’s result in the following way. Let ψB and ψC denote mo-measurable
pointwise realizations of PcχB and PcχC respectively, and define

B̃ :=
{
k ∈ K/Ko : ψB(k) > 0

}
and C̃ :=

{
k ∈ K/Ko : ψC(k) > 0

}
.
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Now assume that there is a set A ⊂ G on which ϕap vanishes, i.e.∫
K/Ko

ψB(ιK(a)−1 · k)ψC(k) dmo(k) = 0, ∀ a ∈ A.

Since ψB and ψC are both non-negative functions, we must also have

mo(ιK(a) · B̃ ∩ C̃) = 0, ∀ a ∈ A.

Note that the function

ψ(g) := m(ιK(g)B̃ ∩ C̃), g ∈ G,

is almost periodic.

6.3.3. Connections to bG. By the universal property of the Bohr compactification (bG, ιo),
there exists a continuous surjective homomorphism

ι′ : bG→ K

such that ιK = ι′ ◦ ιo. Let p : K → K/Ko denote the canonical quotient map and set
p′ := p ◦ ι′. Then p′ : bG → K/Ko is a continuous and G-equivariant surjection, so in
particular p′∗m = mo, and the identity above can be lifted to the identity

m(ιo(a) · p′−1(B̃) ∩ p′−1(C̃)) = 0, ∀ a ∈ A.

Now suppose that A is a FS-large set. Since the function

ϕ′(g) := m(ιo(g) · p′−1(B̃) ∩ p′−1(C̃))

is almost periodic function on G, Corollary 6.3 implies that there exists a Borel set
Ao ⊂ bG with

m(Ao) ≥ d∗FS(A)

such that ϕ′ vanishes on Ao, so in particular,∫
bG

∫
bG

χAo(a)χBo(a
−1 · k)χCo(k) dm(k) dm(a),

where Bo and Co denote the sets p′−1(B̃) and p′−1(C̃) respectively. Note that

m(Bo) = mo(B̃) and m(Co) = mo(C̃).

Upon changing the order of integration, we get∫
Co

m(Ao ∩ k ·B−1
o ) dm(k) = 0,

and thus Co ⊂ U c, modulo m-null sets in bG, where

U :=
{
k ∈ bG : m(Ao ∩ k ·B−1

o ) > 0
}
.
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6.3.4. Almost everywhere inclusions. Let us summarize the discussion so far. Given a FS-
large set A ⊂ G and ν-measurable sets B,C ⊂ X, we have constructed a mo-measurable
set C̃ ⊂ K/Ko such that

C ⊂ π−1(C̃)

modulo ν-null sets in X and an open set U ⊂ bG (of the explicit form above) such that

p′−1(C̃) ⊂ U c

modulo m-null sets in bG.
If Y is a G-space and C is a subset of Y , we define

Cy :=
{
g ∈ G : g · y ∈ C

}
, y ∈ Y.

The following lemma will be useful.

Lemma 6.8. Let Y be a compact G-space and suppose ν is a non-singular probability
measure on Y . If A,B ⊂ Y are ν-measurable sets with ν(A \ B) = 0, then there exists a
ν-conull subset Y ′ ⊂ Y such that

Ay ⊂ By, ∀ y ∈ Y ′.

Proof. It suffices to prove that if N ⊂ Y is a ν-null set, then Ny is empty for a conull set
of y in Y . Note that {

y ∈ Y : Ny 6= ∅
}

= G ·N.

Since G is countable and ν is non-singular, we conclude that ν(G ·N) = 0, which finishes
the proof. �

The Bohr compactification (bG, ιo) can be viewed as a G-space in two ways (using the
left or right action). In this paper, we shall use the left action, so if g ∈ G, we write

g · k := ιo(g) · k, k ∈ bG,
so that if V ⊂ bG is any subset, then

Vk =
{
g ∈ G : g · k ∈ V

}
= ι−1

o (V · k−1).

The lemma above implies that there exists a ν-conull subset X ′′ ⊂ X ′ such that

Cx ⊂ π−1(C̃)x = C̃π(x), ∀x ∈ X ′′

and a m-conull set Z ⊂ bG such that

C̃p′(k) = p′−1(C̃)k ⊂ U c
k = ι−1

o (U c · k−1), ∀ k ∈ Z.
In particular, for ν-almost every x ∈ X, there exists k ∈ bG such that

Cx ⊂ ι−1
o (U c · k).

We summarize this observation in the following proposition.

Proposition 6.9. Suppose A ⊂ G is FS-large and B,C ⊂ X are ν-measurable sets
such that the intersection AB ∩ C is a ν-null set. Then there exist m-mesaurable sets
Ao, Bo ⊂ bG with

m(Ao) ≥ d∗FS(A) and m(Bo) ≥ ν(B)
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and a ν-conull set X ′′ ⊂ X with the property that for all x ∈ X ′′, there exists k ∈ bG such
that

Cx ⊂ ι−1
o (U c · k),

where
U :=

{
k ∈ bG : m(Ao ∩ k ·B−1

o ) > 0
}
.

6.4. Proof of Proposition 1.4. Let us first briefly recall the setting of Proposition 1.4.
Let G be a countable group and fix an admissible probability measure µ on G once and
for all. Let A ⊂ G be a Fourier-Stiltjes large set and let B ⊂ G a strongly non-paradoxical
set. Denote by BB the Bebutov algebra of B and by X the Gelfand spectrum of BB. Since
B is unital and separable, X is compact and second countable. Let B′ ⊂ X denote the
clopen set which corresponds to B under the Gelfand map.

6.4.1. Reducing the measure-preserving spaces. By Corollary 6.2 there exist λ ∈ Pµ(βG)
such that the pushed forward probability measure η′ := (πB)∗λ on X is G-invariant and
ergodic with

d∗np(B) = η′(B′)

and a λ-measurable set C ′ ⊂ X with

AB ⊃ π−1
B (C ′)c

modulo λ-null sets in βG, so in particular, we have

η′(a ·B′ ∩ C ′) = 0, ∀ a ∈ A.
By Proposition 3.3, λ is non-singular and thus Lemma 6.8 guarantees that we can find a
λ-conull set Z ⊂ βG such that

ABq ⊃ (π−1
B (C ′)c)q = (C ′c)x,

where x = πB(q), for all q ∈ Z.

6.4.2. Reducing to bG. By Proposition 6.9 applied with ν = η′, there exist m-measurable
sets Ã, B̃ ⊂ bG with

m(Ã) ≥ d∗FS(A) and m(B̃) ≥ η′(B′)

and a η′-conull subset X ′ ⊂ X with the property that for all x ∈ X ′, there is k ∈ bG such
that

C ′x ⊂ ι−1
o (U c · k),

where
U :=

{
k ∈ bG : m(Ã ∩ k · B̃−1) > 0

}
.

Combining the two assertions above, we conclude that there exists a λ-conull set Z ′ ⊂ Z
such that for all q ∈ Z ′, there exists k ∈ bG such that

ABq ⊃ C
′c
x ⊃ ι−1

o (U · k),

where x = πB(q), and this finishes the proof.

7. Proof of Proposition 1.5

We shall now outline the proof of Proposition 1.5. After some preliminary work, we
will see that it easily follows from Corollary 2.8.
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7.0.3. Almost automorphic points. Let Y be a compact G-space. A point y ∈ Y is almost
automorphic if whenever we have gα · y → yo for some net (gα) in G, then g−1

α · yo → y.
We stress that this is a very special kind of point and such points do not always exist.

However, it is easy to see that if (K, ιo) is a compactification of G and Y := K/Ko for
some closed subgroup Ko < K, where G acts by

g · kKo = gkKo, kKo ∈ K/Ko,

then every point in Y is almost automorphic.

7.0.4. Constructing joint extensions. Now let X be another compact G-space, equipped
with a G-transitive point xo. If Y admits an almost automorphic point, we shall see that
it is easy to construct joint extensions of the two systems.

Lemma 7.1. Suppose y ∈ Y is an almost automorphic point. Then, for all x ∈ X, there
exists yo ∈ Y such that

(x, y) ∈ G(xo, yo).

Proof. Choose a net (gα) in G such that gα · xo → x and extract a subnet (gβ) with the
property that g−1

β · y converges to a point yo ∈ Y . Since y is almost automorphic, we have
gβ · yo → y, and thus

gβ · (xo, yo)→ (x, y),

along this subnet. �

Fix x ∈ X and an almost automorphic point y ∈ Y and let

Y ′ := G · yo and Z := G(xo, yo),

where yo is the point guaranteed by the previous lemma. In particular, z := (x, y) ∈ Z.
Let zo := (xo, yo) and denote by πX and πY ′ the canonical projections of Z onto X and

Y ′ respectively. Let π : βG→ Z be the (left) G-equivariant map with π(ē) = zo induced
from the inclusion C(Z) ↪→ C(βG).

7.0.5. Small boundary property. Fix an admissible probability measure µ on G and sup-
pose U ⊂ Y ′ is Jordan measurable with respect to all µ-stationary probability measures
on Y ′. In particular, if Y ′ is a compact homogeneous space as above, then this condition
reduces to U being Jordan measurable with respect to the Haar measure (since every
µ-stationary Borel probability measure on a compact homogenous space is invariant - see
e.g. [10]).

Let B ⊂ X be a clopen set and suppose

Bx ⊃ Uy.

Define
B′ := (πX ◦ π)−1(B) and U ′ := (πY ′ ◦ π)−1(U)

and choose q ∈ βG such that π(q) = z. Then

B′q ⊃ U ′q.

Note that B′ ⊂ βG is clopen and since U ′ is the pull-back under a G-equivariant continu-
ous map from βG onto Z, Lemma 2.7 implies that U ′ is Jordan measurable with respect
all elements in Lµ.
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In particular, by Corollary 2.8 (recall that Lµ is left saturated by Lemma 3.4), there
exists a Lµ-conull set T ⊂ G such that

B′ē ⊃ U ′ē ∩ T.

Since T is right thick by Corollary 3.5, we have proved Proposition 1.5.

8. Proof of Proposition 1.6

Recall that if K is a compact hausdorff group and U ⊂ K is an open set, then there
exists a finite set F ⊂ K such that FU = K. We define the syndeticity index sK(U) as
the minimal cardinality of such a finite set.

8.1. Syndeticity index of product sets. Let K be a compact hausdorff group. By
Steinhaus Lemma, whenever A,B ⊂ K are Borel sets with positive Haar measures, then
the product set AB has non-empty interior. We wish to bound the syndeticity index of
this interior in terms of the Haar measures of A and B.

We begin with a few simple lemmata.

Lemma 8.1. Suppose C,D ⊂ K are Borel sets. Then there exists ko ∈ K such that

m(C ∩ ko ·D) ≥ m(C) ·m(D).

Proof. This is immediate from the identity∫
K

m(C ∩ k ·D) dm(k) = m(C) ·m(D).

�

Lemma 8.2. Suppose E ⊂ K is a Borel set with positive Haar measure and define the
open set

U :=
{
k ∈ K : m(E ∩ k · E) > 0

}
⊂ K.

Then,

sK(U) ≤
⌊ 1

m(E)

⌋
.

Proof. If U = K, there is nothing to prove, so assume there exists k1 /∈ U . For n ≥ 2, we
choose

kn /∈ U ∪
( n−1⋃
j=1

kj · U
)
,

provided the right hand side does not equal K. Note that k−1
i · kj /∈ U for all i < j, so in

particular,

m(ki · E ∩ kj · E) = m(E ∩ k−1
i · kj · E) = 0,

for all i 6= j. Hence

m
(
E ∪

( n−1⋃
j=1

kjE
))

= m(E) +
n−1∑
j=1

m(kj · E) = n ·m(E),
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for all n, provided that

K 6= U ∪
( n−1⋃
j=1

kj · U
)
.

Since E ⊂ K has positive measure, there exists n ≥ 1, such that

n ·m(E) ≤ 1 and (n+ 1) ·m(E) > 1.

For this n, the set

F :=
{
e, k1, . . . , kn−1

}
⊂ K

must satisfy F · U = K, and hence

sK(U) ≤ n ≤ 1

m(E)
,

which finishes the proof. �

Proposition 8.3. Suppose C,D ⊂ K are Borel sets with positive Haar measures and
define the open set

U :=
{
k ∈ K : m(C ∩ k ·D) > 0

}
⊂ K.

Then,

sK(U) ≤
⌊ 1

m(C) ·m(D)

⌋
.

Proof. By Lemma 8.1 there exists ko ∈ K such that the set

E := C ∩ ko ·D

has measure at least m(C) ·m(D). Hence,

m(C ∩ k ·D) ≥ m(E ∩ k · k−1
o · E)

for all k ∈ K. Define the open set

U ′ :=
{
k ∈ K : m(E ∩ k · E) > 0

}
⊂ K.

By Lemma 8.2 there exists a finite set F ⊂ K with

|F | ≤
⌊ 1

m(E)

⌋
≤
⌊ 1

m(C) ·m(D)

⌋
.

such that FU ′ = K. Since

U ⊃ U ′ · ko,

we conclude that

sK(U) ≤
⌊ 1

m(C) ·m(D)

⌋
.

�
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8.2. Proof of Proposition 1.6. There is no reason to expect that the set U in Propo-
sition 8.3 is Jordan measurable. However, as we shall see in this subsection, it always
contains an open Jordan measurable subset of the same syndeticity index. This will fol-
low from the following proposition, which for compact and metrizable groups is quite
standard. Although the setting can be adapted so that only this weaker version of the
proposition needs to be applied, we shall here give the proof of the same statement for
any compact hausdorff group.

Proposition 8.4. Suppose C ⊂ K is a closed set. Then C equals the intersection of a
decreasing net (Cα) of closed Jordan measurable sets in K.

Before we turn to the proof of this proposition, we give an easy corollary.

Corollary 8.5. Suppose U ⊂ K is an open set with the property that there exists a finite
set F ⊂ K such that FU = K. Then there exists an open Jordan measurable subset
U ′ ⊂ U such that FU ′ = K.

Proof. By Proposition 8.4, there exists an increasing net (Vα) of open Jordan measurable
sets with

U =
⋃
α

Vα.

In particular,

K = FU =
⋃
α

FVα.

Hence, (FVα) is an open covering of K, so we may extract a finite sub-covering. Since
(Vα) is nested, there must exist α such that

K = FVα,

which finishes the proof. �

The proof of Proposition 1.6 is now immediate.

Proof of Proposition 1.6. Suppose A,B ⊂ K are Borel sets with positive m-measures and
define the open set

U :=
{
k ∈ K : m(A ∩ k ·B) > 0

}
⊂ K.

By Lemma 8.3,

sK(U) ≤
⌊ 1

m(A) ·m(B)

⌋
,

and by Corollary 8.5, we can find a Jordan measurable set U ′ ⊂ U with

sK(U ′) ≤
⌊ 1

m(A) ·m(B)

⌋
,

which finishes the proof. �
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8.3. Proof of Proposition 8.4. Recall (see Chapter 2 in [22] for the proof) that if X is
any (locally) compact hausdorff space and K ⊂ X is compact and U ⊂ X is an open set
containing K, then there exists an open subset V with compact closure such that

K ⊂ V ⊂ U.

This simple property of locally compact hausdorff spaces is the only thing required to
give a proof of the following statement, which clearly implies Proposition 8.4.

Proposition 8.6. Suppose K ⊂ X is compact. Then, for every open subset U ⊃ K,
there exists a µ-Jordan measurable set K ⊂ C ⊂ U .

Proof. Fix ε > 0 and a decreasing sequence (εn) of positive real numbers, converging to
zero, with εo = ε.

By regularity of µ, we can find an open set Uo ⊂ U with

K ⊂ Uo

and
µ(Uo) ≤ µ(K) + ε0.

Since X is a locally compact hausdorff space, there exists an open set V0,1 ⊂ X with
compact closure such that

K ⊂ V0,1 ⊂ V0,1 ⊂ Uo.

By regularity of µ, we choose an open set U1 ⊂ X such that

µ(U1) ≤ µ(V0,1) + ε1

and since X is a locally compact hausdorff space we can find open sets V1,0, V1,1 ⊂ X such
that

K ⊂ V0,1 ⊂ V1,0 ⊂ V1,0 ⊂ V1,1 ⊂ V1,1 ⊂ U1.

Again, by regularity of µ, we can find an open set U2 ⊂ V1,1 with

µ(U2) ≤ µ(V1,0) + ε2

and open sets V2,0, V2,1 ⊂ X such that

K ⊂ V1,0 ⊂ V2,0 ⊂ V2,0 ⊂ V2,1 ⊂ V2,1 ⊂ U2 ⊂ V1,1.

For n > 2, we can find an open set Un+1 ⊂ Vn,1 with

µ(Un+1) ≤ µ(Vn,0) + εn+1

and open sets Vn+1,0, Vn+1,1 ⊂ X such that

K ⊂ Vn,0 ⊂ Vn+1,0 ⊂ Vn+1,0 ⊂ Vn+1,1 ⊂ Vn+1,1 ⊂ Un+1 ⊂ Vn,1.

By construction
Vn,0 ⊂ Vn+1,0 and Vn,1 ⊃ Vn+1,1,

for all n and hence, if we define

V :=
⋃
n

Vn,0 and C :=
⋂
n

Vn,1,

then V ⊂ X is open and C ⊂ X is closed, and moreover

µ(V ) = lim
n
µ(Vn+1,0) and µ(C) = lim

n
µ(Vn+1,1).
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Since
µ(Vn+1,1) ≤ µ(Un+1) ≤ µ(Vn,0) + εn+1 ≤ µ(Vn+1,0) + εn+1,

for all n and εn → 0, we have

µ(C) = lim
n
µ(Vn+1,1) ≤ lim

n

(
µ(Vn+1,0) + εn+1

)
= µ(V ).

Since V ⊂ C, we conclude that C is µ-Jordan measurable, and

µ(C) ≤ µ(Uo) ≤ µ(K) + ε.

To prove the second assertion, we first note that the set K ⊂ Vo is arbitrary, and thus we
can always ensure that there exists a closed µ-Jordan measurable set

K ⊂ C ⊂ Vo.

Since K is compact, there exists a decreasing net (Vα) of open sets with

K =
⋂

Vα,

and from the arguments above, we know that, for every α, there exists a µ-Jordan mea-
surable set such that

K ⊂ Cα ⊂ Vα,

which finishes the proof. �
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