menuicon

Research

Follow us_twitter

Publication Search Results

Exact matches for:

1. Hu J, Mathas A, Rostam S
Jun Hu, Andrew Mathas, and Salim Rostam: Skew cellularity of the Hecke algebras of type G(ℓ,p,n), Representation Theory, 27 (2023), 508–573.


2. Hu J, Mathas A
Jun Hu and Andrew Mathas: Fayers’ conjecture and the socles of cyclotomic Weyl modules, Transactions of the American Mathematical Society, 371 (2019), no. 2, 1271--1307.


3. Hu J, Mathas A
Jun Hu and Andrew Mathas: Seminormal forms and cyclotomic quiver Hecke algebras of type A, Mathematische Annalen, 364 (2016), no. 3-4, 1189–1254. MR3466865


4. Hu J, Mathas A
Jun Hu and Andrew Mathas: Quiver Schur algebras for linear quivers, Proceedings of the London Mathematical Society, 110 (2015), no. 3, 1315–1386.


5. Hu J, Xiao Z
Jun Hu and Zhankui Xiao: Partially harmonic tensors and quantized Schur-Weyl duality, Quantized algebra and physics, Proceedings of the International Workshop on Quantized Algebra and Physics, Mo-Lin Ge, Chengming Bai and Naihuan Jing (eds.), Nankai Ser. Pure Appl. Math. Theoret. Phys, World Scientific, Singapore, (2012), 109–137. ISBN 978-981-4340-44-1. MR2905523


6. Hu J, Mathas A
Jun Hu and Andrew Mathas: Decomposition numbers for Hecke algebras of type \(G(r, p, n)\): The \((\epsilon, q)\)-separated case, Proceedings of the Londonn Mathematical Society, 104 (2012), no. 5, 865–926. MR2928331


7. Hu J, Mathas A
Jun Hu and Andrew Mathas: Graded induction for Specht modules, International Mathematics Research Notices, 2012 (2012), no. 6, 1230–1263. MR2899951


8. Hu J, Xiao Z
Jun Hu and Zhankui Xiao: Partially Harmonic Tensors and Quantized Schur-Weyl Duality, Quantized Algebra and Physics, Nankai Series in Pure, Applied Mathematics and Theoretical Physics, World Scientific, Singapore, (2011), 109–137. ISBN 978-981-4340-44-1.


9. Hu J
Jun Hu: On a generalisation of the Dipper-James-Murphy conjecture, Journal of Combinatorial Theory, Series A, 118 (2011), 78–93.


10. Hu J
Jun Hu: BMW algebra, quantized coordinate algebra and type \(C\) Schur-Weyl duality, Representation Theory, 15 (2011), 1–62.


11. Hu J
Jun Hu: Dual partially harmonic tensors and Brauer-Schur-Weyl duality, Transformation Groups, 15 (2010), no. 2, 333–370. MR2657445


12. Hu J, Mathas A
Jun Hu and Andrew Mathas: Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type \(A\), Advances in Mathematics, 225 (2010), 598–642. MR2671176


13. Hu J, Xiao Z
Jun Hu and Zhankui Xiao: On tensor spaces for Birman-Murakami-Wenzl algebras, Journal of Algebra, 324 (2010), 2893–2922. MR2725207


14. Hu J, Mathas A
J Hu and A Mathas: Morita equivalences of cyclotomic Hecke algebras of type \(G(r, p, n)\), Journal für die reine und angewandte Mathematik, 628 (2009), 169–194.


15. Doty S, Hu J
Stephen Doty, Jun Hu: Schur-Weyl duality for orthogonal groups, Proceedings of the London Mathematical Society, 98 (2009), 679–713. MR2500869


16. Hu J
Jun Hu: On the decomposition numbers of the Hecke algebra of type D_n when n is even, Journal of Algebra, 321 (2009), 1016–1038. MR2488565


17. Hu J
Jun Hu: The number of simple modules for the Hecke algebras of type G(r,p,n) (with an appendix by Xiaoyi Cui), Journal of Algebra, 321 (2009), 3375–3396. MR2510053


Number of matches: 17