Publication Search Results
Exact matches for:
- Author = Hu J [web profile page]
1.
Hu J, Mathas A, Rostam S
Jun Hu, Andrew Mathas, and Salim Rostam:
Skew cellularity of the Hecke algebras of type G(ℓ,p,n),
Representation Theory,
27
(2023),
508–573.
2.
Hu J, Mathas A
Jun Hu and Andrew Mathas:
Fayers’ conjecture and the socles of cyclotomic Weyl modules,
Transactions of the American Mathematical Society,
371
(2019),
no. 2,
1271--1307.
3.
Hu J, Mathas A
Jun Hu and Andrew Mathas:
Seminormal forms and cyclotomic quiver Hecke algebras of type A,
Mathematische Annalen,
364
(2016),
no. 3-4,
1189–1254.
MR3466865
4.
Hu J, Mathas A
Jun Hu and Andrew Mathas:
Quiver Schur algebras for linear quivers,
Proceedings of the London Mathematical Society,
110
(2015),
no. 3,
1315–1386.
5.
Hu J, Mathas A
Jun Hu and Andrew Mathas:
Seminormal forms and cyclotomic quiver Hecke algebras of type \(A\),
(2013),
preprint.
6.
Hu J, Xiao Z
Jun Hu and Zhankui Xiao:
Partially harmonic tensors and quantized Schur-Weyl duality,
Quantized algebra and physics,
Proceedings of the International Workshop on Quantized Algebra and Physics,
Mo-Lin Ge, Chengming Bai and Naihuan Jing (eds.),
Nankai Ser. Pure Appl. Math. Theoret. Phys,
World Scientific,
Singapore,
(2012),
109–137.
ISBN 978-981-4340-44-1.
MR2905523
7.
Hu J, Mathas A
Jun Hu and Andrew Mathas:
Decomposition numbers for Hecke algebras of type \(G(r, p, n)\): The \((\epsilon, q)\)-separated case,
Proceedings of the Londonn Mathematical Society,
104
(2012),
no. 5,
865–926.
MR2928331
8.
Hu J, Mathas A
Jun Hu and Andrew Mathas:
Graded induction for Specht modules,
International Mathematics Research Notices,
2012
(2012),
no. 6,
1230–1263.
MR2899951
9.
Hu J, Mathas A
Jun Hu and Andrew Mathas:
Quiver Schur algebras for the linear quiver I,
(2011),
preprint.
10.
Hu J, Xiao Z
Jun Hu and Zhankui Xiao:
Partially Harmonic Tensors and Quantized Schur-Weyl Duality,
Quantized Algebra and Physics,
Nankai Series in Pure, Applied Mathematics and Theoretical Physics,
World Scientific,
Singapore,
(2011),
109–137.
ISBN 978-981-4340-44-1.
11.
Hu J
Jun Hu:
On a generalisation of the Dipper-James-Murphy conjecture,
Journal of Combinatorial Theory, Series A,
118
(2011),
78–93.
12.
Hu J
Jun Hu:
BMW algebra, quantized coordinate algebra and type \(C\) Schur-Weyl duality,
Representation Theory,
15
(2011),
1–62.
13.
Hu J, Mathas A
Jun Hu and Andrew Mathas:
Graded induction for Specht modules,
(2010),
preprint.
14.
Hu J, Mathas A
Jun Hu and Andrew Mathas:
Morita equivalences of cyclotomic Hecke algebras of type \(G(r,p,n)\) II: the \((\varepsilon,q)\)-separated case,
(2010),
preprint.
15.
Hu J
Jun Hu:
On a generalisation of the Dipper--James--Murphy Conjecture,
(2010),
preprint.
16.
Hu J
Jun Hu:
Dual partially harmonic tensors and Brauer-Schur-Weyl duality,
Transformation Groups,
15
(2010),
no. 2,
333–370.
MR2657445
17.
Hu J, Mathas A
Jun Hu and Andrew Mathas:
Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type \(A\),
Advances in Mathematics,
225
(2010),
598–642.
MR2671176
18.
Hu J, Xiao Z
Jun Hu and Zhankui Xiao:
On tensor spaces for Birman-Murakami-Wenzl algebras,
Journal of Algebra,
324
(2010),
2893–2922.
MR2725207
19.
Hu J
Jun Hu:
BMW algebra, quantized coordinate algebra and type \(C\) Schur--Weyl duality,
(2009),
preprint.
20.
Hu J, Mathas A
Jun Hu and Andrew Mathas:
Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type A,
(2009),
preprint.
21.
Hu J, Mathas A
J Hu and A Mathas:
Morita equivalences of cyclotomic Hecke algebras of type \(G(r, p, n)\),
Journal für die reine und angewandte Mathematik,
628
(2009),
169–194.
22.
Doty S, Hu J
Stephen Doty, Jun Hu:
Schur-Weyl duality for orthogonal groups,
Proceedings of the London Mathematical Society,
98
(2009),
679–713.
MR2500869
23.
Hu J
Jun Hu:
On the decomposition numbers of the Hecke algebra of type D_n when n is even,
Journal of Algebra,
321
(2009),
1016–1038.
MR2488565
24.
Hu J
Jun Hu:
The number of simple modules for the Hecke algebras of type G(r,p,n) (with an appendix by Xiaoyi Cui),
Journal of Algebra,
321
(2009),
3375–3396.
MR2510053
Number of matches: 24 |